
Abstract
This  paper presents an abstract computation model of the evolu-
tion of camouflage in nature. The 2d model uses  evolved tex-
tures for prey, a background texture representing  the environ-
ment and a visual predator. In  these experiments, the predator’s 
role is played by a human  observer. They  are shown a cohort  of 
ten evolved textures overlaid on the background texture. They 
click on the five most conspicuous prey  to  remove (“eat”) them. 
These lower fitness textures  are removed  from the population 
and replaced with newly bred textures. Biological morphogene-
sis  is represented  in this  model  by procedural texture synthesis. 
Nested expressions of generators and  operators  form a texture 
description  language. Natural evolution  is represented by  ge-
netic programming, a variant  of the genetic algorithm. GP 
searches the space of texture description programs for those 
which appear least conspicuous to the predator.

Introduction
That animals often resemble their environment has been ob-
served since ancient times. This sometimes incredible visual 
similarity highlights the adaptation of life to its environment. 
Since the earliest publication on evolution, camouflage has 
been cited as a key illustration of natural selection’s effect:

When we see leaf-eating insects green,  and bark-feeders 
mottled-gray; alpine ptarmigan white in winter, the red-
grouse the colour of heather, and the black-grouse that of 
peaty earth, we must believe that these tints are of service 
to these birds and insects in preserving them from danger.
– Charles Darwin, 1859
   On the Origin of Species by Means of Natural Selection

Natural camouflage appears to result from coevolution be-
tween predator and prey.  Many predators use vision to locate 

their prey, so prey have a survival advantage if they are harder 
to see. Predators with superior vision are better able to find 
prey, giving them a survival advantage. Over time this leads to 
well camouflaged prey and to predators with excellent eye-
sight and a talent for “breaking” camouflage.

The hypothesis for these experiments was that selection 
pressure from a visual predator will gradually eliminate the 
most conspicuous (least well camouflaged) prey from the 
evolving population.  Prey would then converge on more ef-
fective camouflage. The results presented here lend support to 
this idea and point the way to more powerful human-computer 
hybrid systems as well as future simulation studies of the co-
evolution of prey camouflage and predator vision.

As defined in (Stevens and Merilaita,  2009) the term cam-
ouflage includes all strategies of concealment. To distinguish 
from hiding,  this is taken to mean reducing the chance of rec-
ognizing an animal which is otherwise in plain sight. (Thayer, 
1909) describes a bird “in plain sight but invisible.” The more 
specific term crypsis refers to preventing initial detection, 
including the sort of cryptic coloration commonly implied by 
the term camouflage. For comparison, crypsis helps prey 
avoid detection while mimicry protects by leading predators to 
misclassify prey after detection.

A common misconception about camouflage is that ideally 
it should match the background. This is generally untrue ex-
cept for homogenous environments like white snow or green 
leaves.  Consider a color-matched and borderless photographic 
print of an environment, say the surface of a rock.  If the print 
is placed on the rock it will not be perfectly cryptic. Disconti-
nuities at the edge of the print stimulate low level edge detec-
tors in the visual system, causing a strong perception of a rec-
tangle. Moving the print to another location on the rock will 
also reveal subtle variations in color and texture which add 
additional contrast at the edge of the print.

Much recent work on camouflage (see next section) has 
focused on the importance of disruptive camouflage.  While 
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Figure 1: camouflaged “prey” overlaid on the background image for which they were evolved
(a) tree bark, (b) twisty wire, (c) flowers, (d) serpentine, (e) Yosemite granite



these patterns often echo colors and textures from the envi-
ronment,  their effectiveness comes from their ability to visu-
ally disrupt the visual silhouette of an animal. This can pre-
vent a predator from recognizing that an object is an animal, 
or even prevent the detection of an “object” in the first place, 
see (Schaefer and Stobbe, 2006). Paradoxically,  camouflage 
that does not match the background can be more effective 
through the use of strong visual features (false edges) that 
intersect the object’s real edges (Stevens and Cuthill,  2006). 
Most of the effective camouflage patterns evolved in these 
experiments appear to have disruptive qualities.

The work described here lies between computer science and 
evolutionary biology. This multidisciplinary middle ground is 
variously called theoretical biology,  mathematical biology or 
artificial life. Research in this middle area has the potential to 
benefit all related fields. From a computer graphics perspec-
tive, this could be seen as a special case of goal-oriented tex-
ture synthesis where new textures can be created from a de-
scription of desired image properties.  To biologists,  a compu-
tation model of camouflage evolution could allow new types 
of theoretical experiments to be conducted in simulation 
which are not subject to constraints imposed by working in 
the field, or with live animals, and in general is not limited to 
examples found in Earth’s biosphere.

Related Work
Over the last century several seminal works have surveyed the 
broad topic of camouflage in nature. These include (Beddard, 
1895), (Thayer, 1909) and (Cott, 1940).  The latter two con-
tinue to be widely cited today. Over the last 20-30 years there 
has been a significant renaissance in the study of camouflage. 
Before that,  work in this area tended to be more descriptive 
than experimental. It is challenging to design well-controlled 
studies of the effectiveness of camouflage in either the field or 
the laboratory. Still with careful design and patient experimen-
tation,  studies providing new insights have appeared regularly 
in the biological literature. For an excellent recent survey, see 
(Stevens and Merilaita, 2009).

Of particular relevance to the work presented here are vari-
ous experiments offering artificial prey to real predators. 
Many valuable results have been obtained with a similar ex-
perimental design involving “cardboard moths” (Cuthill, et al. 
2005) and avian insectivores: wild birds that naturally prey on 
moths. During the day these nocturnal moths rest on tree 
trunks protected by their cryptic wing coloration. Artificial 
moths are constructed with cardboard wings decorated with a 
color printer, a worm is attached to serve as an edible “body,” 
and the “moth” is attached to a tree trunk. A missing worm is 
taken to indicate that a wild bird detected and attacked the 

moth.  This technique has shown the key important of disrup-
tive coloration (Schaefer and Stobbe, 2006), measured the 
disadvantage of symmetrical camouflage (Cuthill, et al. 2006), 
and several related topics.

Other experiments have used live captive birds (Bond and 
Kamil,  2002) and humans (Sherratt, et al.  2007) as predators 
of “virtual artificial prey” on a display screen. In both cases 
this predation was used to drive a evolutionary computation 
like in the work described here. In (Merilaita, 2003) artificial 
predators learn to detect artificial prey whose camouflage 
evolves to avoid detection.  However the textures used are 
quite small, 4 to 8 symbolic pixels. A recent simulation-based 
study looked at a unique three-player camouflage game based 
on evolution of flower color (Abbott, 2010).

The original idea of using an interactive task as the fitness 
function for an evolutionary computation goes back to the 
Blind Watchmaker software that accompanied (Dawkins, 
1986). That application displayed a grid of biomorphs, small 
tree-structured line drawings with a genetic description.  The 
user picked a favorite which was mutated several times to 
produce a new generation. Dawkins introduced the idea of 
intentionally evolving toward a goal,  a biomorph he called the 
“holy grail.” Karl Sims combined a similar approach with 
genetic programming and a rich set of image processing func-
tions to create an interactive system for aesthetic evolution of 
texture patterns (Sims,  1991).  In (Funes, et al. 1998) and other 
papers,  Jordan Pollack’s DEMO group describe their TRON 
project where game-playing agents were evolved in competi-
tion with each other and then in competition with human 
players over the web. A survey of related techniques used to 
create game content is presented in (Togelius, et al.  2010). A 
deep survey of the whole field of interactive evolutionary 
computation is found in (Takagi, 2001).

This work conceptually overlaps the large body of work in 
example-based texture synthesis, also known as texture exten-
sion,  which creates arbitrarily large texture patterns to match a 
small exemplar texture (Wei,  et al.  2009). Using this technique 
to generate camouflage image puzzles is described in (Chu, et 
al.  2010). In contrast, the synthesis of camouflage texture 
described in this paper does not “see” or otherwise access the 
input texture.  Instead the background can only be inferred 
from the indirect evidence of predation,  as it is in evolution of 
natural camouflage.

Texture Synthesis
In nature, patterns of surface coloration on plants and animal 
result from complex genetic and developmental processes 
collectively called morphogenesis (see for example, (Eizirik,  
et al.  2010)).  In this simulation model,  pattern formation is 
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Figure 2: these camouflaged prey are only partially or occasionally effective, features in this peppers background were too large to “solve”



represented by procedural texture synthesis (Ebert, et al. 
1994). More specifically, this work uses programmatic texture 
synthesis. Textures are defined by nested expressions of gen-
erators and operators, forming a programming language for 
textures. Generators produce results of type Texture from 
simple types (numbers, 2D vectors and RGB colors). Opera-
tors are similar but have one or more Texture parameters. 
These nested expressions look like composition of functions 
(see Figures 12 and 13) although in this implementation they 
are specifically constructors for C++ classes representing the 
various types of procedural textures.  Once the tree of proce-
dural texture objects is constructed,  its root provides an inter-
face for rendering pixels.

This texture synthesis library (Reynolds, 2009) brings to-
gether several preexisting techniques. Its generators include 
uniform colors and simple patterns like spots and color grada-
tions. There are a collection of gratings (e.g.  a sine wave grat-
ing) and an assortment of noise patterns such as noise and 
turbulence (Perlin, 1985) plus variations on these. The li-
brary’s collection of texture operators include simple geomet-
rical transformation (such as scale, rotate and translate), sim-
ple image processing operations (add, subtract,  multiply, ad-
justment of intensity, hue, saturation), convolution-based op-
erations (blur, edge detect, edge enhance),  operators to pro-
duce multiple copies of a texture (row, array, ring),  and a col-

lection of image warping operators (stretch, wrap, twist,  ...). 
Several operators use a 1D “slice” of a texture, such as color-
izing one texture by mapping its brightness into colors along 
the y=0 axis of another texture.  Only convolution-based tex-
ture operators have fixed pixel resolution,  all others use float-
ing point coordinates. The complete texture synthesis API 
used in these experiments is listed in Appendix 1. Missing 
from the library are reaction-diffusion and other compute 
heavy textures, awaiting a GPGPU implementation.

Evolutionary Computation
The texture synthesis library described in the previous section 
was designed for use with genetic programming  (Koza, 1992). 
Like the closely related genetic algorithm (Holland, 1975), 
GP is a stochastic technique for population-based (parallel) 
search and optimization in high dimensional spaces. These 
evolutionary computation (EC) techniques are inspired by 
evolution in the natural world and share some of its attributes. 
While GP is used in this work as a model of natural evolution 
it is important to keep in mind the vast differences between 
the two.  For example,  natural  evolution works with very large 
populations and very long time scales. Much of the engineer-
ing in evolutionary computation has to do with getting useful 
results without requiring billions of individuals or waiting 
millions of years.

A genetic programming system maintains a population of 
individuals, each of which represent a program expressed in a 
given grammar. In this work, each individual is a program that 
defines a procedural texture. These programs can be thought 
of as nested expressions of composed functions, or as a tree of 
functional nodes. The GP population is initialized to randomly 
generated programs. GP uses a given fitness function (objec-
tive function) to evaluate each individual. Fitness is used to 
select which individuals will reproduce to create new off-
spring programs to replace lower fitness individuals in the 
population.  New individuals are created by genetic operators 
such as crossover and mutation. GP crossover involves replac-
ing a sub-node of one program with a sub-node of another 
program. It is essentially “random syntax-aware cut-and-
paste” between programs. Over time, programs containing 
beneficial code fragments become more numerous in the 
population.  Crossover tweaks these programs, juxtaposing 
code fragments in new ways. Some changes improve fitness 
and some reduce fitness, but the population is biased to collect 
the good and discard the bad.

For these experiments,  genetic programming was imple-
mented with the excellent open source library Open BEAGLE 
(Gagné and Parizeau, 2006),  (Open BEAGLE, 2002). This 
flexible framework provides support for many common types 
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Figure 3:  progression of camouflage patterns during a run with the granite environment

Figure 4: “random” textures automatically evolved with genetic 
programming using a non-interactive ad hoc fitness function



of evolutionary computation while also allowing customiza-
tion of all  aspects of the process.  For example Open BEAGLE 
supports the variation on GP used here that allows mixtures of 
data types known as strongly typed genetic programming or 
STGP (Montana,  1995). In addition Open BEAGLE’s struc-
ture allows changing its population replacement strategy op-
erator and fitness evaluation operator to implement the novel 
cohort fitness used for interactive evaluation of relative cam-
ouflage effectiveness.

In these experiments GP populations consist of 100 or 120 
individual texture programs.  These are run, on average, for the 
equivalent of 100 generations using steady state replacement. 
So roughly 10000 individuals are bred and have their fitness 
tested in 1000 cohorts of 10 individuals each.  The population 
is divided into 4 or 5 demes (islands, isolated breeding popula-
tions, with occasional migration) of 20 or 30 individuals each. 
In addition to GP  crossover between programs,  the floating 
point constants in each program were subjected to incremental 
(“jiggle”) mutation. Figure 4 shows early tests (before the 
interactive camouflage experiments) of evolved textures using 
using an ad hoc fitness function. This fitness function merely 
measures simple image properties such as a somewhat uni-
form brightness histogram and some color variation. These 
textures were created automatically with no human in the 
loop, then interesting results were hand selected for Figure 4.

Interactive Evaluation of Camouflage
The role of predator in these experiments is played by a hu-
man observer who visually compares the quality of evolved 
camouflage patterns.  This happens in a simple graphical user 
interface. The user sees a blank window and clicks the mouse 
or trackpad to begin a “round” of the camouflage game. The 
window is redrawn to show a background texture on which is 
overlaid a cohort of circular prey objects, each with an 
evolved camouflage texture, see Figure 5. In these experi-
ments a cohort contains ten individuals. Prey are placed on the 
background in random non-overlapping positions.  They were 
allowed to extend partially outside the window,  perhaps a 
poor choice.

The user’s task is to inspect the scene, locate prey objects, 
and select the one that appears most conspicuous—that con-
trasts most strongly with the background.  This selection is 
indicated with a mouse click on the prey object,  signaling the 
act of abstract predation. In response the GUI records the se-
lection, removes the selected prey from the cohort and redis-
plays, erasing the prey.  Now the scene consists of the back-
ground with n-1 prey objects and the user selects the next 
most conspicuous. This process is repeated five times, leaving 
five survivors from the original cohort of ten.  (Cohort size and 
the number “eaten” can be varied, 10 and 5 seemed to work 
well in these experiments.) The window returns to its blank 
state and awaits the next round.

In typical GA/GP application, fitness conveys fine grada-
tions of quality. In this model,  fitness is binary: life or death. 
Individuals selected by the predator are removed from the 
population.  This is similar to the selective breeding of (Unemi, 
2003). Survivors, spared by the predator, retain their high 
fitness and pass into the next generation (called elitism in evo-
lutionary computation).  For each “round” of the camouflage 
game,  the predator looks at a cohort of ten textured prey. 

These are drawn randomly from a deme population which is 
half newly bred and half survivors from earlier generations. 
From this cohort of 10 new and old prey, the predator “eats” 
those with the least effective camouflage in the cohort.  This 
culls out both ineffective new prey and old obsolete prey. Im-
provement during one run is shown in Figure 3.
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Figure 5: screen shots showing interactive sessions with
“serpentine” (top) and “twisty wires” (middle) and “flowers” 

(bottom) environments. In all three, a new cohort of ten evolved 
textures is shown overlaid on the background.



The original plan was that a static image of prey over back-
ground would be presented to the user who would then click 
on the prey in order of conspicuousness. However it seemed 
the user might lose track of which prey had already been se-
lected.  Some sort of mark could be drawn to indicate which 
had been selected.  But the presence of those already selected 
(more conspicuous) prey, if not the marks themselves, might 
interfere with finding the nth most conspicuous prey. Erasing 
prey as they are selected removes this potential distraction. It 
gives the user a less demanding cognitive task: scan the image 
and identify the most conspicuous remaining prey.  This kind 
of salience detection seems to happen at a low level in the 
vision system and requires little or no abstract reasoning (Itti, 
et al. 1998).

Still this task can be ambiguous for the human observer. 
Given a green background and a collection of red, purple and 
checkerboard prey textures—as might happen in the early 
stages of an evolution run—it can be hard to decide which of 
the conspicuous prey is the worst match to the background.

Results
While not all evolutionary runs found convincing results, 
some produced effective camouflage. In fact some evolved 
camouflage was so effective that they were missed in the 
user’s initial scan for prey. They were overlooked until a count 
revealed a “missing prey” and a second, more careful, visual 
search was made. That a jaded experimenter was actually 
fooled by evolved camouflage is a significant success. This 
happened with the “bark” background in Figure 1a.  Similarly 
it was very hard to pick out some of the prey in the run with 
the “serpentine” background shown in Figure 5.

In these experiments, the evolving prey population usually 
moved toward matching the typical color or texture of the 
background. Matching on multiple characteristics was appar-
ently harder. Sometimes a run would find the exact color but 
never really get the pattern right (see Figures 10(right) and  
11) and vice versa (Figure 10(middle)). A few times both 
came together to produce a compelling result. Combinations 
of multiple colors seemed a much harder target for adaptation. 
This was especially true when features in the background 
were larger than the prey (as for example with “berries” (Fig-
ure 6) and “peppers” (Figures 2 and 7)).  Prey size implies an 
upper bound on the size of features (lower bound on spatial 
frequencies) that can be matched. In the extreme, an environ-
ment made up of large areas of uniform appearance allows no 
effective camouflage for small prey.

Evolutionary computation commonly produces a mix of 
successful and unsuccessful runs. Some variability is inevita-

ble using a stochastic optimization technique. When too many 
bad runs are seen, a typical fix is to run the evolutionary com-
putation with a larger population.  For a standard EC applica-
tion this is just a matter of investing more processors or time. 
With an interactive fitness function there is a trade-off be-
tween bigger populations and the limits of human endurance. 
In these experiments,  a typical run has 1000 cohorts, so re-
quires about 5000 mouse clicks. If the user can keep up a blis-
tering pace of one evaluation and click per second, a run costs 
about 1.5 hours of mind numbing work. My rate is signifi-
cantly slower, plus I cannot work steadily at it for more than 
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Figure 6: accidental “blue” berries

Figure 7: pattern on prey similar to stem on red pepper above it.

Figure 8:  progression of camouflage patterns during a run with the pebbles environment
(nice color-matched texture, followed by better frequency matching, then something like feature matching)

Figure 9 lentils
(near feature size limit)



15-30 minutes at a sitting. See Future Work about addressing 
this problem with distributed human computation.

These experiments are based on the hypothesis that camou-
flage can be evolved,  given only that an observer can identify 
the most conspicuous prey in a group. While effective camou-
flage patterns have been found,  this idea is not clearly proved. 
The methodology used here presents a risk of experimenter 
bias.  The same person advances the hypothesis and serves as 
the subject in an experiment to test it. With knowledge of how 
the interactive task is mapped into fitness,  it is possible to 
“game” the task, using it for aesthetic selection as in (Sims, 
1991). For example,  the user might be reluctant to “eat” a prey 
with a particularly interesting camouflage pattern, even if it 
were more conspicuous than others in the cohort.

It would be inappropriate to call it an instance of “mimicry” 
but some interesting shapes evolved in a run using the mixed 
berries background (see Figure 6). While the colors are wrong 
and the shapes and textures are off, some of the prey looked a 
bit like blueberries with a frosted white surface and a sugges-
tion of the “crown” (remains of the flower) at the end of a 
blueberry.  Similarly in a “peppers” run a prey was found that 
looked a lot like the top of a red bell pepper with its green 
stem (see Figure 7).  These chance similarities do not say 
much about mimicry in nature, except that one can see how 
easily it can arise and then be amplified and refined by even a 
small survival advantage. 

See http://www.red3d.com/cwr/iec/ for additional results.

Future Work
These initial experiments were intended as the first steps in a 
more comprehensive study of camouflage evolution. Beyond 
refining this technique, two new research directions are 
planned.

Refinements on the current approach include improvements 
to the texture synthesis library and modified user interaction. 
Cohorts now contain a fixed number of camouflaged prey. It 
may be helpful to vary this number to remove a clue that well 
camouflaged prey have been overlooked.  (Kashtan, et al. 
2007) suggests that periodically changing evolutionary goals 

provides better results. For camouflage evolution, this might 
equate to periodically cycling between several related back-
ground images, perhaps several photographs of a similar envi-
ronment.

The first new research direction is to use distributed human 
computation over the Internet to allow using larger genetic 
populations. This should provide stronger results and allow 
tackling more challenging kinds of background images. One 
approach is simply to pay people to perform the interactive 
fitness test. Utilities like Amazon Mechanical Turk (Amazon, 
2005) provide infrastructure to crowdsource small tasks like 
these requiring human judgement.  Another approach is to 
entice people to participate voluntarily by casting the task as a 
game—a “game with a purpose” like the Google Image La-
beler (Google,  2006) and other examples at gwap.com. Sev-
eral techniques have been identified to change a mundane task 
into a game, such as scores, time limits, leader-boards and live 
competition against other human players, see (von Ahn and 
Dabbish, 2008).

The second new research direction is to investigate syn-
thetic predators  to allow evolving camouflage without a hu-
man in the loop. Using techniques from machine vision and 
machine learning, the goal would be to train an agent to 
“break” camouflage.  It would need to analyze an image,  iden-
tify unusual salient regions (Itti, 1998), and classify them as 
being either part of the background or potential camouflaged 
prey. Such an agent could then be coupled with the texture 
synthesis and evolutionary computation components of the 
current work to form a closed co-optimization loop (see (Wil-
son, 2009) for a similar proposal). Camouflaged prey would 
demonstrate fitness by avoiding detection while predator vi-
sion agents would demonstrate fitness by detecting camou-
flage prey. Such a system would provide a useful computation 
model of the coevolution of camouflage.
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Figure 11: an unsuccessful early run using the “serpentine” background and a rank-based fitness scheme that was later abandoned

Figure 10: early results on “leaves” (left) and “cracked 
wheat” (middle) both based on the Wrapulence texture 
which features edges at many scales and so helps create 
disruptive camouflage. The right hand texture appears to be 
based on the cloud-like Brownian  texture which is  not ap-
propriate for the “berries” background but managed to 
match three colors of the environment: red, white and blue.
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Appendix 1: Texture Synthesis Details
One input to Strongly Typed Genetic Programming (Montana, 
1995) is a description of a set of functions and the types asso-
ciated with their inputs and outputs.  The texture synthesis 
library used in this work included types for procedural tex-
tures, 2d Cartesian vectors, RGB colors and numbers. There 
are five numeric types,  all floating point, with unique ranges 
(and so whether negative or zero values are included).  Ran-
dom constants (GP calls them ephemeral constants) are gen-
erated according to these types. 

The texture synthesis library contained 52 texture produc-
ing elements.  Some of the names are self-descriptive, for oth-

ers, and for description of parameter types for each,  see (Rey-
nolds, 2009). Texture generators: UniformColor,  Soft-
EdgeSpot,  Gradation, SineGrating,  TriangleWaveGrating, 
SoftEdgedSquareWaveGrating, RadialGrad, Noise, Color-
Noise, Brownian, Turbulence, Furbulence, Wrapulence and 
NoiseDiffClip. Texture operators: Scale, Translate,  Rotate, 
Mirror, Add,  Subtract, Multiply,  Max, Min, SoftMatte,  Ex-
pAbsDiff,  Row, Array,  Invert, Tint, Stretch, StretchSpot, 
Wrap,  Ring, Twist, VortexSpot, Blur, EdgeDetect, EdgeEn-
hance, SliceGrating, SliceToRadial,  SliceShear,  Colorize, 
Gamma, AdjustSaturation, AdjustHue, BrightnessToHue, 
BrightnessWrap, BrightnessSlice4,  HueIfAny,  SoftThreshold, 
SpotsInCircle and ColoredSpotsInCircle.
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Colorize (Ring (5.80532,
                Vec2 (-2.12073, 0.411024),
                Stretch (0.0449509,
                         -1.06448,
                         Vec2 (-1.37922, 0.946741),
                         Furbulence (1.21806,
                                     Vec2 (1.62529, 2.9815)))),
          Furbulence (1.21806,
                      Vec2 (-2.94693, -1.86416)))

Figure 12: disruptive oak bark camouflage of Fig. 1(a), re-
rendered at 600x600 resolution, with its evolved source code

Figure 13: camouflaged prey evolved on “serpentine”
background with its evolved source code

Invert (SoftMatte (HueIfAny (Colorize (Twist (-1.76008, Vec2 
(-2.90822, -1.26208), Multiply (Brownian (0.880861, Vec2 
(2.80615, 1.14405)), Wrap (6.21909, 5.55726, Vec2 (1.88101, 
-1.10475), Add (VortexSpot (-2.95874, 4.37424, Vec2 (-2.24113, 
-0.804409), Row (Vec2 (-1.20827, -0.80333), Wrapulence (5.81646, 
Vec2 (1.46969, 0.464754)))), Multiply (TriangleWaveGrating 
(15.0552, 0.251605, 4.92253), Wrap (6.21909, 5.25948, Vec2 
(-2.90822, -1.26208), Add (ColoredSpotsInCircle (146.485, 
0.573184, 0.103147, Stretch (1.92016, 0.932767, Vec2 (0.994563, 
1.8778), SineGrating (17.4233, 0.477075)), Translate (Vec2 
(1.3634, -3.05406), Colorize (SineGrating (87.1581, 1.2438), 
SoftEdgedSquareWaveGrating (138.03, 0.0101831, 0.894823, 
1.03307))), SliceToRadial (Vec2 (-1.20827, -0.80333), ColorNoise 
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