
Abstract
This paper presents an abstract computation model of the evolu-
tion of camouflage in nature. The 2d model uses evolved tex-
tures for prey, a background texture representing the environ-
ment and a visual predator. In these experiments, the predator’s
role is played by a human observer. They are shown a cohort of
ten evolved textures overlaid on the background texture. They
click on the five most conspicuous prey to remove (“eat”) them.
These lower fitness textures are removed from the population
and replaced with newly bred textures. Biological morphogene-
sis is represented in this model by procedural texture synthesis.
Nested expressions of generators and operators form a texture
description language. Natural evolution is represented by ge-
netic programming, a variant of the genetic algorithm. GP
searches the space of texture description programs for those
which appear least conspicuous to the predator.

Introduction
That animals often resemble their environment has been ob-
served since ancient times. This sometimes incredible visual
similarity highlights the adaptation of life to its environment.
Since the earliest publication on evolution, camouflage has
been cited as a key illustration of natural selection’s effect:

When we see leaf-eating insects green, and bark-feeders
mottled-gray; alpine ptarmigan white in winter, the red-
grouse the colour of heather, and the black-grouse that of
peaty earth, we must believe that these tints are of service
to these birds and insects in preserving them from danger.
– Charles Darwin, 1859
 On the Origin of Species by Means of Natural Selection

Natural camouflage appears to result from coevolution be-
tween predator and prey. Many predators use vision to locate

their prey, so prey have a survival advantage if they are harder
to see. Predators with superior vision are better able to find
prey, giving them a survival advantage. Over time this leads to
well camouflaged prey and to predators with excellent eye-
sight and a talent for “breaking” camouflage.

The hypothesis for these experiments was that selection
pressure from a visual predator will gradually eliminate the
most conspicuous (least well camouflaged) prey from the
evolving population. Prey would then converge on more ef-
fective camouflage. The results presented here lend support to
this idea and point the way to more powerful human-computer
hybrid systems as well as future simulation studies of the co-
evolution of prey camouflage and predator vision.

As defined in (Stevens and Merilaita, 2009) the term cam-
ouflage includes all strategies of concealment. To distinguish
from hiding, this is taken to mean reducing the chance of rec-
ognizing an animal which is otherwise in plain sight. (Thayer,
1909) describes a bird “in plain sight but invisible.” The more
specific term crypsis refers to preventing initial detection,
including the sort of cryptic coloration commonly implied by
the term camouflage. For comparison, crypsis helps prey
avoid detection while mimicry protects by leading predators to
misclassify prey after detection.

A common misconception about camouflage is that ideally
it should match the background. This is generally untrue ex-
cept for homogenous environments like white snow or green
leaves. Consider a color-matched and borderless photographic
print of an environment, say the surface of a rock. If the print
is placed on the rock it will not be perfectly cryptic. Disconti-
nuities at the edge of the print stimulate low level edge detec-
tors in the visual system, causing a strong perception of a rec-
tangle. Moving the print to another location on the rock will
also reveal subtle variations in color and texture which add
additional contrast at the edge of the print.

Much recent work on camouflage (see next section) has
focused on the importance of disruptive camouflage. While

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Interactive Evolution of Camouflage

Craig Reynolds

Sony Computer Entertainment, US R&D
craig_reynolds@playstation.sony.com

Figure 1: camouflaged “prey” overlaid on the background image for which they were evolved
(a) tree bark, (b) twisty wire, (c) flowers, (d) serpentine, (e) Yosemite granite

these patterns often echo colors and textures from the envi-
ronment, their effectiveness comes from their ability to visu-
ally disrupt the visual silhouette of an animal. This can pre-
vent a predator from recognizing that an object is an animal,
or even prevent the detection of an “object” in the first place,
see (Schaefer and Stobbe, 2006). Paradoxically, camouflage
that does not match the background can be more effective
through the use of strong visual features (false edges) that
intersect the object’s real edges (Stevens and Cuthill, 2006).
Most of the effective camouflage patterns evolved in these
experiments appear to have disruptive qualities.

The work described here lies between computer science and
evolutionary biology. This multidisciplinary middle ground is
variously called theoretical biology, mathematical biology or
artificial life. Research in this middle area has the potential to
benefit all related fields. From a computer graphics perspec-
tive, this could be seen as a special case of goal-oriented tex-
ture synthesis where new textures can be created from a de-
scription of desired image properties. To biologists, a compu-
tation model of camouflage evolution could allow new types
of theoretical experiments to be conducted in simulation
which are not subject to constraints imposed by working in
the field, or with live animals, and in general is not limited to
examples found in Earth’s biosphere.

Related Work
Over the last century several seminal works have surveyed the
broad topic of camouflage in nature. These include (Beddard,
1895), (Thayer, 1909) and (Cott, 1940). The latter two con-
tinue to be widely cited today. Over the last 20-30 years there
has been a significant renaissance in the study of camouflage.
Before that, work in this area tended to be more descriptive
than experimental. It is challenging to design well-controlled
studies of the effectiveness of camouflage in either the field or
the laboratory. Still with careful design and patient experimen-
tation, studies providing new insights have appeared regularly
in the biological literature. For an excellent recent survey, see
(Stevens and Merilaita, 2009).

Of particular relevance to the work presented here are vari-
ous experiments offering artificial prey to real predators.
Many valuable results have been obtained with a similar ex-
perimental design involving “cardboard moths” (Cuthill, et al.
2005) and avian insectivores: wild birds that naturally prey on
moths. During the day these nocturnal moths rest on tree
trunks protected by their cryptic wing coloration. Artificial
moths are constructed with cardboard wings decorated with a
color printer, a worm is attached to serve as an edible “body,”
and the “moth” is attached to a tree trunk. A missing worm is
taken to indicate that a wild bird detected and attacked the

moth. This technique has shown the key important of disrup-
tive coloration (Schaefer and Stobbe, 2006), measured the
disadvantage of symmetrical camouflage (Cuthill, et al. 2006),
and several related topics.

Other experiments have used live captive birds (Bond and
Kamil, 2002) and humans (Sherratt, et al. 2007) as predators
of “virtual artificial prey” on a display screen. In both cases
this predation was used to drive a evolutionary computation
like in the work described here. In (Merilaita, 2003) artificial
predators learn to detect artificial prey whose camouflage
evolves to avoid detection. However the textures used are
quite small, 4 to 8 symbolic pixels. A recent simulation-based
study looked at a unique three-player camouflage game based
on evolution of flower color (Abbott, 2010).

The original idea of using an interactive task as the fitness
function for an evolutionary computation goes back to the
Blind Watchmaker software that accompanied (Dawkins,
1986). That application displayed a grid of biomorphs, small
tree-structured line drawings with a genetic description. The
user picked a favorite which was mutated several times to
produce a new generation. Dawkins introduced the idea of
intentionally evolving toward a goal, a biomorph he called the
“holy grail.” Karl Sims combined a similar approach with
genetic programming and a rich set of image processing func-
tions to create an interactive system for aesthetic evolution of
texture patterns (Sims, 1991). In (Funes, et al. 1998) and other
papers, Jordan Pollack’s DEMO group describe their TRON
project where game-playing agents were evolved in competi-
tion with each other and then in competition with human
players over the web. A survey of related techniques used to
create game content is presented in (Togelius, et al. 2010). A
deep survey of the whole field of interactive evolutionary
computation is found in (Takagi, 2001).

This work conceptually overlaps the large body of work in
example-based texture synthesis, also known as texture exten-
sion, which creates arbitrarily large texture patterns to match a
small exemplar texture (Wei, et al. 2009). Using this technique
to generate camouflage image puzzles is described in (Chu, et
al. 2010). In contrast, the synthesis of camouflage texture
described in this paper does not “see” or otherwise access the
input texture. Instead the background can only be inferred
from the indirect evidence of predation, as it is in evolution of
natural camouflage.

Texture Synthesis
In nature, patterns of surface coloration on plants and animal
result from complex genetic and developmental processes
collectively called morphogenesis (see for example, (Eizirik,
et al. 2010)). In this simulation model, pattern formation is

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Figure 2: these camouflaged prey are only partially or occasionally effective, features in this peppers background were too large to “solve”

represented by procedural texture synthesis (Ebert, et al.
1994). More specifically, this work uses programmatic texture
synthesis. Textures are defined by nested expressions of gen-
erators and operators, forming a programming language for
textures. Generators produce results of type Texture from
simple types (numbers, 2D vectors and RGB colors). Opera-
tors are similar but have one or more Texture parameters.
These nested expressions look like composition of functions
(see Figures 12 and 13) although in this implementation they
are specifically constructors for C++ classes representing the
various types of procedural textures. Once the tree of proce-
dural texture objects is constructed, its root provides an inter-
face for rendering pixels.

This texture synthesis library (Reynolds, 2009) brings to-
gether several preexisting techniques. Its generators include
uniform colors and simple patterns like spots and color grada-
tions. There are a collection of gratings (e.g. a sine wave grat-
ing) and an assortment of noise patterns such as noise and
turbulence (Perlin, 1985) plus variations on these. The li-
brary’s collection of texture operators include simple geomet-
rical transformation (such as scale, rotate and translate), sim-
ple image processing operations (add, subtract, multiply, ad-
justment of intensity, hue, saturation), convolution-based op-
erations (blur, edge detect, edge enhance), operators to pro-
duce multiple copies of a texture (row, array, ring), and a col-

lection of image warping operators (stretch, wrap, twist, ...).
Several operators use a 1D “slice” of a texture, such as color-
izing one texture by mapping its brightness into colors along
the y=0 axis of another texture. Only convolution-based tex-
ture operators have fixed pixel resolution, all others use float-
ing point coordinates. The complete texture synthesis API
used in these experiments is listed in Appendix 1. Missing
from the library are reaction-diffusion and other compute
heavy textures, awaiting a GPGPU implementation.

Evolutionary Computation
The texture synthesis library described in the previous section
was designed for use with genetic programming (Koza, 1992).
Like the closely related genetic algorithm (Holland, 1975),
GP is a stochastic technique for population-based (parallel)
search and optimization in high dimensional spaces. These
evolutionary computation (EC) techniques are inspired by
evolution in the natural world and share some of its attributes.
While GP is used in this work as a model of natural evolution
it is important to keep in mind the vast differences between
the two. For example, natural evolution works with very large
populations and very long time scales. Much of the engineer-
ing in evolutionary computation has to do with getting useful
results without requiring billions of individuals or waiting
millions of years.

A genetic programming system maintains a population of
individuals, each of which represent a program expressed in a
given grammar. In this work, each individual is a program that
defines a procedural texture. These programs can be thought
of as nested expressions of composed functions, or as a tree of
functional nodes. The GP population is initialized to randomly
generated programs. GP uses a given fitness function (objec-
tive function) to evaluate each individual. Fitness is used to
select which individuals will reproduce to create new off-
spring programs to replace lower fitness individuals in the
population. New individuals are created by genetic operators
such as crossover and mutation. GP crossover involves replac-
ing a sub-node of one program with a sub-node of another
program. It is essentially “random syntax-aware cut-and-
paste” between programs. Over time, programs containing
beneficial code fragments become more numerous in the
population. Crossover tweaks these programs, juxtaposing
code fragments in new ways. Some changes improve fitness
and some reduce fitness, but the population is biased to collect
the good and discard the bad.

For these experiments, genetic programming was imple-
mented with the excellent open source library Open BEAGLE
(Gagné and Parizeau, 2006), (Open BEAGLE, 2002). This
flexible framework provides support for many common types

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Figure 3: progression of camouflage patterns during a run with the granite environment

Figure 4: “random” textures automatically evolved with genetic
programming using a non-interactive ad hoc fitness function

of evolutionary computation while also allowing customiza-
tion of all aspects of the process. For example Open BEAGLE
supports the variation on GP used here that allows mixtures of
data types known as strongly typed genetic programming or
STGP (Montana, 1995). In addition Open BEAGLE’s struc-
ture allows changing its population replacement strategy op-
erator and fitness evaluation operator to implement the novel
cohort fitness used for interactive evaluation of relative cam-
ouflage effectiveness.

In these experiments GP populations consist of 100 or 120
individual texture programs. These are run, on average, for the
equivalent of 100 generations using steady state replacement.
So roughly 10000 individuals are bred and have their fitness
tested in 1000 cohorts of 10 individuals each. The population
is divided into 4 or 5 demes (islands, isolated breeding popula-
tions, with occasional migration) of 20 or 30 individuals each.
In addition to GP crossover between programs, the floating
point constants in each program were subjected to incremental
(“jiggle”) mutation. Figure 4 shows early tests (before the
interactive camouflage experiments) of evolved textures using
using an ad hoc fitness function. This fitness function merely
measures simple image properties such as a somewhat uni-
form brightness histogram and some color variation. These
textures were created automatically with no human in the
loop, then interesting results were hand selected for Figure 4.

Interactive Evaluation of Camouflage
The role of predator in these experiments is played by a hu-
man observer who visually compares the quality of evolved
camouflage patterns. This happens in a simple graphical user
interface. The user sees a blank window and clicks the mouse
or trackpad to begin a “round” of the camouflage game. The
window is redrawn to show a background texture on which is
overlaid a cohort of circular prey objects, each with an
evolved camouflage texture, see Figure 5. In these experi-
ments a cohort contains ten individuals. Prey are placed on the
background in random non-overlapping positions. They were
allowed to extend partially outside the window, perhaps a
poor choice.

The user’s task is to inspect the scene, locate prey objects,
and select the one that appears most conspicuous—that con-
trasts most strongly with the background. This selection is
indicated with a mouse click on the prey object, signaling the
act of abstract predation. In response the GUI records the se-
lection, removes the selected prey from the cohort and redis-
plays, erasing the prey. Now the scene consists of the back-
ground with n-1 prey objects and the user selects the next
most conspicuous. This process is repeated five times, leaving
five survivors from the original cohort of ten. (Cohort size and
the number “eaten” can be varied, 10 and 5 seemed to work
well in these experiments.) The window returns to its blank
state and awaits the next round.

In typical GA/GP application, fitness conveys fine grada-
tions of quality. In this model, fitness is binary: life or death.
Individuals selected by the predator are removed from the
population. This is similar to the selective breeding of (Unemi,
2003). Survivors, spared by the predator, retain their high
fitness and pass into the next generation (called elitism in evo-
lutionary computation). For each “round” of the camouflage
game, the predator looks at a cohort of ten textured prey.

These are drawn randomly from a deme population which is
half newly bred and half survivors from earlier generations.
From this cohort of 10 new and old prey, the predator “eats”
those with the least effective camouflage in the cohort. This
culls out both ineffective new prey and old obsolete prey. Im-
provement during one run is shown in Figure 3.

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Figure 5: screen shots showing interactive sessions with
“serpentine” (top) and “twisty wires” (middle) and “flowers”

(bottom) environments. In all three, a new cohort of ten evolved
textures is shown overlaid on the background.

The original plan was that a static image of prey over back-
ground would be presented to the user who would then click
on the prey in order of conspicuousness. However it seemed
the user might lose track of which prey had already been se-
lected. Some sort of mark could be drawn to indicate which
had been selected. But the presence of those already selected
(more conspicuous) prey, if not the marks themselves, might
interfere with finding the nth most conspicuous prey. Erasing
prey as they are selected removes this potential distraction. It
gives the user a less demanding cognitive task: scan the image
and identify the most conspicuous remaining prey. This kind
of salience detection seems to happen at a low level in the
vision system and requires little or no abstract reasoning (Itti,
et al. 1998).

Still this task can be ambiguous for the human observer.
Given a green background and a collection of red, purple and
checkerboard prey textures—as might happen in the early
stages of an evolution run—it can be hard to decide which of
the conspicuous prey is the worst match to the background.

Results
While not all evolutionary runs found convincing results,
some produced effective camouflage. In fact some evolved
camouflage was so effective that they were missed in the
user’s initial scan for prey. They were overlooked until a count
revealed a “missing prey” and a second, more careful, visual
search was made. That a jaded experimenter was actually
fooled by evolved camouflage is a significant success. This
happened with the “bark” background in Figure 1a. Similarly
it was very hard to pick out some of the prey in the run with
the “serpentine” background shown in Figure 5.

In these experiments, the evolving prey population usually
moved toward matching the typical color or texture of the
background. Matching on multiple characteristics was appar-
ently harder. Sometimes a run would find the exact color but
never really get the pattern right (see Figures 10(right) and
11) and vice versa (Figure 10(middle)). A few times both
came together to produce a compelling result. Combinations
of multiple colors seemed a much harder target for adaptation.
This was especially true when features in the background
were larger than the prey (as for example with “berries” (Fig-
ure 6) and “peppers” (Figures 2 and 7)). Prey size implies an
upper bound on the size of features (lower bound on spatial
frequencies) that can be matched. In the extreme, an environ-
ment made up of large areas of uniform appearance allows no
effective camouflage for small prey.

Evolutionary computation commonly produces a mix of
successful and unsuccessful runs. Some variability is inevita-

ble using a stochastic optimization technique. When too many
bad runs are seen, a typical fix is to run the evolutionary com-
putation with a larger population. For a standard EC applica-
tion this is just a matter of investing more processors or time.
With an interactive fitness function there is a trade-off be-
tween bigger populations and the limits of human endurance.
In these experiments, a typical run has 1000 cohorts, so re-
quires about 5000 mouse clicks. If the user can keep up a blis-
tering pace of one evaluation and click per second, a run costs
about 1.5 hours of mind numbing work. My rate is signifi-
cantly slower, plus I cannot work steadily at it for more than

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Figure 6: accidental “blue” berries

Figure 7: pattern on prey similar to stem on red pepper above it.

Figure 8: progression of camouflage patterns during a run with the pebbles environment
(nice color-matched texture, followed by better frequency matching, then something like feature matching)

Figure 9 lentils
(near feature size limit)

15-30 minutes at a sitting. See Future Work about addressing
this problem with distributed human computation.

These experiments are based on the hypothesis that camou-
flage can be evolved, given only that an observer can identify
the most conspicuous prey in a group. While effective camou-
flage patterns have been found, this idea is not clearly proved.
The methodology used here presents a risk of experimenter
bias. The same person advances the hypothesis and serves as
the subject in an experiment to test it. With knowledge of how
the interactive task is mapped into fitness, it is possible to
“game” the task, using it for aesthetic selection as in (Sims,
1991). For example, the user might be reluctant to “eat” a prey
with a particularly interesting camouflage pattern, even if it
were more conspicuous than others in the cohort.

It would be inappropriate to call it an instance of “mimicry”
but some interesting shapes evolved in a run using the mixed
berries background (see Figure 6). While the colors are wrong
and the shapes and textures are off, some of the prey looked a
bit like blueberries with a frosted white surface and a sugges-
tion of the “crown” (remains of the flower) at the end of a
blueberry. Similarly in a “peppers” run a prey was found that
looked a lot like the top of a red bell pepper with its green
stem (see Figure 7). These chance similarities do not say
much about mimicry in nature, except that one can see how
easily it can arise and then be amplified and refined by even a
small survival advantage.

See http://www.red3d.com/cwr/iec/ for additional results.

Future Work
These initial experiments were intended as the first steps in a
more comprehensive study of camouflage evolution. Beyond
refining this technique, two new research directions are
planned.

Refinements on the current approach include improvements
to the texture synthesis library and modified user interaction.
Cohorts now contain a fixed number of camouflaged prey. It
may be helpful to vary this number to remove a clue that well
camouflaged prey have been overlooked. (Kashtan, et al.
2007) suggests that periodically changing evolutionary goals

provides better results. For camouflage evolution, this might
equate to periodically cycling between several related back-
ground images, perhaps several photographs of a similar envi-
ronment.

The first new research direction is to use distributed human
computation over the Internet to allow using larger genetic
populations. This should provide stronger results and allow
tackling more challenging kinds of background images. One
approach is simply to pay people to perform the interactive
fitness test. Utilities like Amazon Mechanical Turk (Amazon,
2005) provide infrastructure to crowdsource small tasks like
these requiring human judgement. Another approach is to
entice people to participate voluntarily by casting the task as a
game—a “game with a purpose” like the Google Image La-
beler (Google, 2006) and other examples at gwap.com. Sev-
eral techniques have been identified to change a mundane task
into a game, such as scores, time limits, leader-boards and live
competition against other human players, see (von Ahn and
Dabbish, 2008).

The second new research direction is to investigate syn-
thetic predators to allow evolving camouflage without a hu-
man in the loop. Using techniques from machine vision and
machine learning, the goal would be to train an agent to
“break” camouflage. It would need to analyze an image, iden-
tify unusual salient regions (Itti, 1998), and classify them as
being either part of the background or potential camouflaged
prey. Such an agent could then be coupled with the texture
synthesis and evolutionary computation components of the
current work to form a closed co-optimization loop (see (Wil-
son, 2009) for a similar proposal). Camouflaged prey would
demonstrate fitness by avoiding detection while predator vi-
sion agents would demonstrate fitness by detecting camou-
flage prey. Such a system would provide a useful computation
model of the coevolution of camouflage.

Acknowledgments
This research was made possible by the generous support of
my employer, Sony Computer Entertainment and particularly
my manager: Dominic Mallinson, Vice President, US R&D. I

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Figure 11: an unsuccessful early run using the “serpentine” background and a rank-based fitness scheme that was later abandoned

Figure 10: early results on “leaves” (left) and “cracked
wheat” (middle) both based on the Wrapulence texture
which features edges at many scales and so helps create
disruptive camouflage. The right hand texture appears to be
based on the cloud-like Brownian texture which is not ap-
propriate for the “berries” background but managed to
match three colors of the environment: red, white and blue.

owe special thanks to my remote friend and collaborator Bjo-
ern Knafla for writing the Cocoa application that served as
GUI for these experiments. Christian Gagné helped exten-
sively with the interface to Open BEAGLE. Thanks to readers
of early versions of this paper and my research proposal: Dan-
iel Weinreb, Iztok Lebar Bajec and again Bjoern Knafla. Oth-
ers have contributed helpful suggestions and discussions:
James O'Brien, Lance Williams, Ken Perlin, Michael Wahr-
man, Andy Kopra and Karen Liu. Thanks to many coworkers
at SCE US R&D, my patient and supportive wife Lisa, my son
Eric, and my daughter Dana who frequently contributed feed-
back and suggestions about this research.

Appendix 1: Texture Synthesis Details
One input to Strongly Typed Genetic Programming (Montana,
1995) is a description of a set of functions and the types asso-
ciated with their inputs and outputs. The texture synthesis
library used in this work included types for procedural tex-
tures, 2d Cartesian vectors, RGB colors and numbers. There
are five numeric types, all floating point, with unique ranges
(and so whether negative or zero values are included). Ran-
dom constants (GP calls them ephemeral constants) are gen-
erated according to these types.

The texture synthesis library contained 52 texture produc-
ing elements. Some of the names are self-descriptive, for oth-

ers, and for description of parameter types for each, see (Rey-
nolds, 2009). Texture generators: UniformColor, Soft-
EdgeSpot, Gradation, SineGrating, TriangleWaveGrating,
SoftEdgedSquareWaveGrating, RadialGrad, Noise, Color-
Noise, Brownian, Turbulence, Furbulence, Wrapulence and
NoiseDiffClip. Texture operators: Scale, Translate, Rotate,
Mirror, Add, Subtract, Multiply, Max, Min, SoftMatte, Ex-
pAbsDiff, Row, Array, Invert, Tint, Stretch, StretchSpot,
Wrap, Ring, Twist, VortexSpot, Blur, EdgeDetect, EdgeEn-
hance, SliceGrating, SliceToRadial, SliceShear, Colorize,
Gamma, AdjustSaturation, AdjustHue, BrightnessToHue,
BrightnessWrap, BrightnessSlice4, HueIfAny, SoftThreshold,
SpotsInCircle and ColoredSpotsInCircle.

References
Abbott, K. (2010). Background evolution in camouflage systems: A

predator–prey/pollinator-flower game. Journal of Theoretical
Biology. 262(4):662-678.

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

Colorize (Ring (5.80532,
 Vec2 (-2.12073, 0.411024),
 Stretch (0.0449509,
 -1.06448,
 Vec2 (-1.37922, 0.946741),
 Furbulence (1.21806,
 Vec2 (1.62529, 2.9815)))),
 Furbulence (1.21806,
 Vec2 (-2.94693, -1.86416)))

Figure 12: disruptive oak bark camouflage of Fig. 1(a), re-
rendered at 600x600 resolution, with its evolved source code

Figure 13: camouflaged prey evolved on “serpentine”
background with its evolved source code

Invert (SoftMatte (HueIfAny (Colorize (Twist (-1.76008, Vec2
(-2.90822, -1.26208), Multiply (Brownian (0.880861, Vec2
(2.80615, 1.14405)), Wrap (6.21909, 5.55726, Vec2 (1.88101,
-1.10475), Add (VortexSpot (-2.95874, 4.37424, Vec2 (-2.24113,
-0.804409), Row (Vec2 (-1.20827, -0.80333), Wrapulence (5.81646,
Vec2 (1.46969, 0.464754)))), Multiply (TriangleWaveGrating
(15.0552, 0.251605, 4.92253), Wrap (6.21909, 5.25948, Vec2
(-2.90822, -1.26208), Add (ColoredSpotsInCircle (146.485,
0.573184, 0.103147, Stretch (1.92016, 0.932767, Vec2 (0.994563,
1.8778), SineGrating (17.4233, 0.477075)), Translate (Vec2
(1.3634, -3.05406), Colorize (SineGrating (87.1581, 1.2438),
SoftEdgedSquareWaveGrating (138.03, 0.0101831, 0.894823,
1.03307))), SliceToRadial (Vec2 (-1.20827, -0.80333), ColorNoise
(1.09284, Vec2 (1.24907, -3.11514)))), Brownian (4.15562, Vec2
(-1.20827, -0.80333))))))))), Brownian (0.880861, Vec2 (2.80615,
1.14405)))), SliceToRadial (Vec2 (-1.20827, -0.80333), ColorNoise
(1.09284, Vec2 (1.24907, -3.11514))), Colorize (Twist (-1.90423,
Vec2 (0.977825, -0.533419), Twist (-1.90423, Vec2 (0.977825,
-0.533419), RadialGrad (195.316, Vec2 (1.24907, -3.11514)))),
Wrapulence (5.81646, Vec2 (0.0918581, -0.543768)))))

Amazon Mechanical Turk. Launched 2005, accessed 2010:
http://www.mturk.com/

Beddard, F. E. (1895). Animal Coloration. An Account of the Princi-
pal Facts and Theories Relating to the Colours and Marking of
Animals. Swan Sonnenschein & Co., London.

Bond, A. B. and Kamil, A. C. (2002). Visual predators select for cryp-
ticity and polymorphism in virtual prey. Nature. 415(6872):
609-613.

Chu, H-K, Hsu, W-H, Mitra, N. J., Cohen-Or, D., Wong, T-T, Lee, T-
Y. (2010). Camouflage Images. To appear in ACM Transactions
on Graphics 29(3).

Cott, H. B. (1940). Adaptive Coloration in Animals. Methuen and
Co., London.

Cuthill, I. C., Stevens, M., Sheppard, J., Maddocks, T., Parraga, and
C. A., Troscianko, T. S. (2005). Disruptive coloration and back-
ground pattern matching. Nature. 434(7029):72-74.

Cuthill, I. C., Hiby, E., and Lloyd, E. (2006). The predation costs of
symmet r i ca l c ryp t i c co lo ra t ion . Proc . B io l . Sc i .
 273(1591):1267-1271.

Darwin, C. (1859). On the Origin of Species by Means of Natural
Selection. John Murray, London.

Dawkins, R. (1986). The Blind Watchmaker. W. W. Norton & Com-
pany, Inc., New York, NY.

Ebert, D. S., Musgrave, F. K, Peachey, D., Perlin, K. and Worley, S.
1994. Texturing and Modeling: A Procedural Approach. AP
Professional. ISBN 0-12-228760-6.

Eizirik, E., David, V., Buckley-Beason, V., Roelke, M., Schaffer, A.,
Hannah, S., Narfstrom, K., O'Brien, S., Menotti-Raymond, M.
(2010). Defining and Mapping Mammalian Coat Pattern Genes:
Multiple Genomic Regions Implicated in Domestic Cat Stripes
and Spots. Genetics 184(1):267-275.

Funes, P., Sklar, E., Juillé, H. and Pollack, J. (1998). Animal-animat
coevolution: using the animal population as fitness function. In
From animals to animats 5, 525-533. MIT Press, Cambridge,
MA.

Gagné, C. and Parizeau, M. (2006). Genericity in Evolutionary Com-
putation Software Tools: Principles and Case-Study. Interna-
tional Journal on Artificial Intelligence Tools, 15(2):173-194.

Google Image Labeler. Launched 2006, accessed 2010:
http://images.google.com/imagelabeler/

Holland, J. H. (1975). Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor.

Itti, L., Koch, C., and Niebur, E. (1998). A Model of Saliency-Based
Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 20(11):1254-1259.

Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments
can speed up evolution. Proceedings of the National Academy of
Sciences. 104(34):13711-13716.

Koza, J.R. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cam-
bridge, MA. ISBN 0-262-11170-5

Merilaita, S. (2003). Visual background complexity facilitates the
evolution of camouflage. Evolution. 57(6):1248-1254.

Montana, D. J. (1995). Strongly typed genetic programming. Evolu-
tionary Computation 3(2):199-230.

Open BEAGLE. (2002). Open BEAGLE evolutionary computation
library, version 3.0.3. Website for code and documentation,
launched 2002, accessed 2010: http://beagle.gel.ulaval.ca/

Perlin, K. (1985). An image synthesizer. SIGGRAPH Comput. Graph.
19(3):287-296.DOI=http://doi.acm.org/ 10.1145/325165.325247

Reynolds, C. (2009) Texture Synthesis Diary (blog/lab notebook),
accessed 2010: http://www.red3d.com/cwr/texsyn/diary.html

Schaefer, H. M. and Stobbe, N. (2006). Disruptive coloration pro-
vides camouflage independent of background matching. Proc.
Biol. Sci. 273(1600):2427-2432.

Sims, K. (1991). Artificial evolution for computer graphics. In Pro-
ceedings of the 18th Annual Conference on Computer Graphics
and interactive Techniques SIGGRAPH '91. ACM, New York,
319-328. DOI= http://doi.acm.org/10.1145/122718.122752

Sherratt, T. N., Pollitt, D., and Wilkinson, D. M. (2007). The evolu-
tion of crypsis in replicating populations of web-based prey.
Oikos. 116(3):449-460.

Stevens, M. and Cuthill, I. C. (2006). Disruptive coloration, crypsis
and edge detection in early visual processing. Proc. R. Soc. B.
273(1598):2141-2147.

Stevens, M. and Merilaita, S. (2009). Animal camouflage: current
issues and new perspectives. Phil. Trans. R. Soc. B. 364(1516):
423-427.

Takagi, H. (2001). Interactive evolutionary computation: Fusion of
the capabilities of EC optimization and human evaluation. Pro-
ceedings of the IEEE. 89(9) 1275-1296.

Togelius, J., Yannakakis, G., Stanley, K., and Browne, C. (2010).
Search-based Procedural Content Generation. Proceedings of
2nd European event on Bio-inspired Algorithms in Games
(EvoGAMES 2010).

Thayer, G. H. (1909). Concealing-coloration in the animal kingdom:
an exposition of the laws of disguise through color and pattern:
being a summary of Abbott H. Thayer's discoveries. Macmillan,
New York, NY.

Unemi, T. (2003). Simulated breeding – a framework of breeding
artifacts on the computer. Kybernetes. 32(1/2) 203-220.

von Ahn, L. and Dabbish, L. (2008). Designing games with a pur-
pose. Commun. ACM 51(8):58-67. DOI= http://doi.acm.org/10.
1145/1378704.1378719

Wei, L-Y, Lefebvre, S., Kwatra, V., and Turk, G. (2009) State of the
Art in Example-based Texture Synthesis, in Eurographics '09
State of the Art Reports (STARs).

Wilson, S.W. (2009). Coevolution of Pattern Generators and Recog-
nizers. Illinois Genetic Algorithms Laboratory TR 2009006.

CC Background Image Sources
Bark by Six Revisions:

http://www.flickr.com/photos/31288116@N02/3752674533/
Cracked wheat by Sanjay Acharya:

http://commons.wikimedia.org/wiki/File:Sa-cracked-wheat.jpg
Flowers (lantana montevidensis in our backyard) by Craig Reynolds

http://www.red3d.com/cwr/iec/
Granite Yosemite by David Monniaux:

http://commons.wikimedia.org/wiki/File:Granite_Yosemite_P1160483.jpg

Leaves by Scott M. Liddell (www.scottliddell.net) with permission:
http://www.morguefile.com/archive/display/90656

Lentils by Daniel Kulinski (Daniel*1977)
http://www.flickr.com/photos/didmyself/2126646787/

Mixed berries by Angelo Juan Ramos:
http://commons.wikimedia.org/wiki/File:Summer_Fruits.jpg

Pebbles by Sean Hattersley:
http://commons.wikimedia.org/wiki/File:Pebbleswithquarzite.jpg

Peppers by Elavats:
http://www.flickr.com/photos/elavats/549041490/

Serpentine by Kevin Walsh:
http://commons.wikimedia.org/wiki/File:Serpentine-texture.jpg

Twisty wires by Clara Natoli (used with permission)
http://www.morguefile.com/archive/display/10850

In Proceedings of ALife XII (12th International Conference on the Synthesis and Simulation of Living Systems), Odense, Denmark, August 19-23, 2010

