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Abstract

Using a simple computational model of visual perception and
locomotion, obstacle avoidance behavior can emerge from
evolution under selection pressure from an appropriate
fitness measure.  The Genetic Programming paradigm is
used to model evolution.  Both the structure of the visual
sensor array, and the mapping from sensor data to motor
action is determined by an evolved control program.  The
motor model assumes an innate constant forward velocity
and limited steering.  The agent can avoid collisions only by
effective steering.  Fitness is based on the number of simulation
steps the agent can run before colliding with an obstacle.

Introduction

In the work described here, a behavioral controller for a 2d
critter (artificial animal, autonomous agent, robot, or what-
have-you) is obtained through simulated evolution.  A
stimulus-response controller for a vision- based obstacle
avoidance task can spontaneously emerge under selection
pressure from a fitness measure relevant to the task.  The
evolutionary process starts with primitive computational
elements that provide simulated perception and motor
control, as well as the arithmetic and logical connections
between them. The fitness of an  individual controller is
determined by installing it in a simulated  critter in a simulated
world and judging the performance it achieves there.  The critter
moves  forward at a constant rate and the controller must "steer"
to avoid collisions with obstacles in its simulated environment.



Collisions are considered fatal.  A critter's fitness is based on
how long it can run before hitting an obstacle.  Over time,
under the patient guidance of fitness testing, the evolutionary
process constructs an increasingly effective mapping from
perception to motor control which allows the critters to get
increasingly effective at avoiding collisions.

This work is not intended to be a realistic model of the
evolution of vision-based obstacle avoidance in natural
animals.  Instead it provides an abstract example of how
vision-based obstacle avoidance can  arise in an evolutionary
process.  It provides a computational model for examining
theories about how specific selection pressures and various
environmental factors affect the evolution of obstacle
avoidance strategies.

While admittedly unconnected to natural evolution of
corresponding behaviors in real animals, this work aspires
to a certain level of plausibility by the closed nature of its
simulated world.  The controller's action is fully determined
by the information it obtains about the simulated world
through its simulated perceptions.  The fitness of a
controller is fully determined by the performance of its
simulated behavior in the simulated world.  The critter's
behavior is grounded in its perception of the world, and its
perception directly reflect the consequences of its behavior.

Maja Mataric has observed that "obstacle avoidance is what
robots spend most of their time doing" [Mataric 1992].  It is
only after these seemingly simple behaviors are correctly
handled that the presumably  more complex behaviors can be
built on top of them.  That obstacle avoidance has such an
important and central role may seem counterintuitive.  We
humans pay scant attention to our own obstacle avoidance
because it happens on such a low, almost subconscious,
level.  To become (painfully!) aware of how much time we
spend engaged in active vision-based obstacle avoidance, we



need only close our eyes while walking through an unfamiliar place
to see how many obstacles we "discover."

One approach to evolving a sensor-based obstacle avoidance
strategy is to postulate a certain fixed sensor array,
specifying the number of sensors and their geometric
configuration.  Then the problem becomes the evolution of a
control structure which maps those sensor channels into
motor action.  This approach would be appropriate if for
example we were dealing with a pre-existing robot vehicle
and wanted a controller for it.  In contrast, natural animals
coevolve their visual systems and motor control systems
over the millennia, neither is fixed in advance. One goal of
this project was to include this kind of coevolution in the
model.  Part of the motivation was a bias for a "natural" as
opposed to "robotic" model.  Another motivation was a
concern that dictating sensor density or placement would
indirectly dictate which obstacle avoidance strategy would
emerge.  The hope was that the unifying concept of
simulated Darwinian evolution could simultaneously solve
both the sensor placement problem and the obstacle
avoidance problem.  The results presented here show will
demonstrate that such coevolution can occur.

Previous Work

Because the work described here overlaps with many areas
of active research, the amount of related previous work is
enormous.  This section is an attempt to identify some of the
most closely related work, with special emphasis on work
that lead to or inspired the current project.  While all
previous work on obstacle avoidance in autonomous agents
is relevant to some degree, the work described here is
concerned with behaviors that are: evolved (as opposed to hand-
coded), remote sensor based (rather than using touch sensors,
or global knowledge of the world), and based on variable



sensor morphology (instead of static placement of a predefined
number of sensors).

A classical work in behavioral modeling is [Braitenberg
1984] which touched on many of the ideas here, but as
thought experiments whose implementation was somewhat
fanciful.  Many researchers (for example [Brooks 1986] and
[Nehmzow 1989]) have worked with simple obstacle
avoidance for real robots based on touch sensors.

Obstacle avoidance techniques have been developed for
synthetic actors in computer animation: [Reynolds 1987],
[Ridsdale 1987], [Reynolds 1988], [Amkraut 1989],
[Ridsdale 1990], and [Girard 1990].  All of the se were based
on global knowledge about the environment, which while suitable
for their intended application, is an unnatural model for an
autonomous agent.

In contrast, [Renault 1990] developed a hand-coded,
vision-based obstacle avoidance technique for animation
applications.  In this system the agent examined its simulated
environment by a variant of computer graphic rendering, producing a
z-buffer (range image) in addition to a color perspective image.  This
allowed the agent to direct its motion based on information about the
distance to various obstacles in its path.  Renault's system made use
of "object tags" which allowed it to unambiguously determine what
object was visible at each pixel and how far away it was.  This too can
be seen as a form of global knowledge, or as imposing a constraint on
the environment, such as requiring every object to be painted a
unique color.

An example of non-evolved, fixed-sensor architecture,
obstacle avoidance for real time robotics based on video
image processing is presented in [Horswill 1991]

Evolved vision-based behaviors are central to  PolyWorld
[Yaeger 1993], a conceptually vast, open-ended Artificial Life
simulator.  In PolyWorld, as in nature, creatures thrive to the extent



that they are able to find food and mate.  Unlike a Genetic Algorithm
system, there are no externally-imposed fitness tests in PolyWorld,
and no explicit goal other than survival.  Simple behaviors like
obstacle avoidance can appear in PolyWorld, but only as a side
effect of the creature's quest for survival.  The simulated world is
rendered to provide color pixel data for a one dimensional retina
which is the primary input to the creatures behavioral controller.

An interesting example of another kind of evolved behavior
is seen in [Ventrella 1990], a legged critter whose interactive,
physically-based walking behavior was derived through
evolution.  The walker's fitness was measured by their ability to
move toward a globally designated "food" location.  In a similar
vain [Maes 1990] describes robotic leaning of coordinated
leg motions, and [de Garis 1990] used a mutation-based
technique to produce controllers for leg motion.  In both cases,
fitness was based on achieving forward motion.

The behavioral controllers described in this paper are very
much in the spirit of the subsumption architecture  originally
described by Rodney Brooks [Brooks 1986].  These reactive agents
base their behavior directly on the world as perceived
through their sensors.  They have little or no higher
cognition and do not bother with complex mental models of
their environment, preferring to use "the world is its own
map" [Brooks 1991].

The current work is very closely related to recent research
by Randy Beer and colleagues.  His earlier work [Beer 1990]
involved painstakingly duplicating by hand the behavioral
repertoire of an insect.  His more recent work [Beer 1992]
derives weights for continuous-time recurrent neural net
behavioral controllers using simulated evolution based on
fitness criteria that measure achievement of the desired
behavior.  A detailed analysis of the complex dynamics these
controllers can be found in [Gallagher 1993].



The work reported here wa s also strongly influenced by Dave
Cliff's manifesto on computational neuroethology [Cliff 1991a] as
well as his hoverfly simulation [Cliff 1991b].  While the
models described here are not based on neurons, the
principles of using a closed, grounded simulation to test
behavioral models are fundamental to this project.
Contemporaneous with the work reported here, the Evolutionary
Robotics group (Harvey, Cliff, and Husbands) at the University of
Sussex were engaged in some very closely related experiments,
subsequently reported at SAB92.  In [Harvey 1993] they describe
evolving dynamical, recurrent neural nets to control  a simulated
robot using touch sensors engaged in tasks such as "wandering" and
"exploring" a space cluttered with obstacles.  In [Cliff 1993],
dynamical, recurrent neural nets are evolved to control a simulated
vision-guided robot whose task was to move to, and remain at, the
center of a circular room.  These vision-guided robots had exactly two
eyes, but various parameters such as placement and "zoom" were
under the control of evolution.  A significant difference between these
projects and the work reported here is that the Sussex group used
noise at each node in their neural nets, both to simulate real world
conditions and to require evolution to discover robust controllers that
do not (can not) depend on coincidental or chance correlations in the
simulated world.

At about the same time this author did some experiments, using a
model essentially identical to the one described here, to investigate
the evolution of coordinated group locomotion behavior [Reynolds
1993].  In those experiments, in order to survive, groups of critters
needed to avoid collisions with static obstacles, to coordinate with
(not run into) each other, and to flee from a pursuing predator.  The
results obtained in that can at best be considered preliminary.

Genetic Algorithms, Genetic Programming, and the
Steady State

At the heart of the work described here is the notion of
simulated evolution.  The basic evolution model used here is
the venerable Genetic Algorithms ("GA"), originally
developed by Holland [Holland 1975].  The Genetic



Algorithm has been widely studied by many authors and
applied to a myriad of practical problems in many different
fields [Holland 1992].  Over the years many variations on
the basic Genetic Algorithms have been proposed.  A hybrid
of two such variations are used to implement the simulated
evolution described in this paper.

John Koza forged a link between the Genetic Algorithm and
computer programming technology with his Genetic
Programming paradigm [Koza 1989], [Koza 1992].  Genetic
Programming ("GP") is a technique for automatically
creating computer programs (often , but not necessarily, in
the Lisp language) that satisfy a specified fitness criteria.
There is a very strong analogy between the operation of the
Genetic Algorithm and Genetic Programming, then main
difference is in the representation of genetic information:
bit strings in GA, fragments of Lisp code in GP.  The use of
fitness-proportionate (or rank-based or tournament) selection,
reproduction, crossover, and mutation are all directly
analogous.

One significant difference is that while classic Genetic
Algorithms work on fixed length bit strings, Genetic
Programming deals with objects of inherently varying size.
The complexity of programs created by GP tend to
correspond to the complexity of the problem being solved.
If simple programs do not satisfy the fitness function, the
Genetic Programming paradigm creates larger programs
that do.  As a result, Genetic Programming does not require
that the user know, or even estimate, the complexity of the
problem at hand.  This was an important consideration for
the goal of coevolving sensor arrays and obstacle avoidance
strategies.  We did not want to specify, for example, how
many sensors should be used. Genetic Programming did not
require such a specification, instead that implicit parameter
could be left to evolve its own preferred value.



(Karl Sims independently developed the idea of using Lisp
code as genetic material.  He used the concept in
combination with a system much like The Blind Watchmaker
("BW") [Dawkins 1986] where fitness is based on a human's
aesthetic judgment.  An analogy which might help clarify the
relationships is that GA  is to GP as BW is to Sims work.  A
discussion of crossover and mutation operations can be
found in [Sims 1991].  These mutation operations were
incorporated into the GP system described in this paper,
but following Koza's lead, the experiments described here did
not use mutation.)

Gilbert Syswerda described a variation on traditional GA he
called Steady State Genetic Algorithms ("SSGA") in Appendix A of
[Syswerda 1989], an analysis of their performance can be
found in [Syswerda 1991] and [Davis 1991].  A similar
technique had previously used in classifier systems and is
described on pages 147-148 of [Holland 1975].  Darrell
Whitley independently discovered this variation and
described it in [Whitley 1989].  While the term "steady
state" has apparently become accepted, the comparison of
"traditional GA" versus "steady state GA" suggests terms like
"batch" versus "continuous" to this author.

The basic idea of SSGAs is to do away with the synchronized
generations of traditional GAs.  Instead there is a continuously
updated population ("gene pool") of evolving individuals.
Each step of the SSGA consists of fitness proportionate (or
rank-based or tournament) selection of two parents from the
population, creation of new individual(s) through crossover
and (occasional) mutation, removal of individual(s) from the
population to make room, and finally insertion of the new
individual(s) back into the population.  An additional
requirement is that all individuals in the population are
required to be unique.  (The step of creating new individuals
loops until unique offspring are found.)  In the work



reported here, the concept of SSGA was applied to GP to
produce a system for "Steady State Genetic Programming."

SSGAs are clearly more greedy because they focus more intently on
high fitness members of the population.  For "easy" problems at least,
this implies that a SSGA will find a solution more quickly than a
traditional GA.  However what "greediness" actually implies is faster
convergence of the population.  This is good news if the population
happens to converge on a global maxima, but it is clearly bad news if
the population converges prematurely on a local maxima.  The
likelihood of being stranded on a local maxima is probably what
characterizes a "hard" problem.

Obstacle Avoidance as Genetic Programming

In order to solve a problem with Genetic Programming we
must restate the problem in a canonical form.  We must
specify a list of functions and a list of terminals.  The Genetic
Programming paradigm will then evolve programs as
hierarchical expressions with the functions applied to
subexpressions which are either one of the terminals or
(recursively) another such expression.  These hierarchies are
known variously as "s-expressions", "lists", "Lisp fragments",
"parse trees" and so on.

The terminals used in the evolved obstacle avoidance
problem are just an assortment of numerical constants: 0,
0.01, 0.1, 0.5, and 2.  The list of functions is:

+
-
*
%
abs
iflte
turn
look-for-obstacle



The functions +, -, and * are the standard Common Lisp
[Steel 1990] arithmetic functions for addition, subtraction,
and multiplication.  Each of them take an arbitrary number
of arguments. The function abs is the standard Common Lisp
absolute value function which takes one argument.  The
functions % and iflte are suggested in [Koza 1992].  Koza
calls % "protected divide", a function of two arguments (A
and B) which returns 1 if B=0 and A/B otherwise.  The
conditional iflte combines the standard Common Lisp
functions if and <= into "if less than or equal".  In the
implementation described here, iflte is a Lisp macro which
makes this source-level transformation:

(iflte a b c d)   �    (if (<= a b) c d)

The functions turn and look-for-obstacle are specific to the
obstacle avoidance problem.  Each of them take a single
argument, an angle relative to the current heading.  Angles
are specified in units of revolutions, a normalized angle
measure: 1 revolution equals 360 degrees or 2�  radians.
These functions will be explained more fully below, but
basically: turn steers the critter by altering its heading by
the specified angle (which is returned as the function's
value).  look-for-obstacle "looks" in the given direction and
returns a measure of how strongly (if at all) an obstacle is
seen.

We must also provide the fitness function  that the Genetic
Programming paradigm will use to judge the fitness of the
programs it creates.  The fitness function takes one
argument, an evolved program, and returns a numerical
fitness value.  In the implementation described here, fitness
values are normalized to lie in the range between zero and
one inclusively.  A fitness of zero means "totally unfit", a
category that can include programs that get errors during
execution.  A fitness of one signifies a perfect solution to the
problem at hand.



Finally there are a few other parameters required to
specify a Genetic Programming run.  In these experiments the
maximum size of programs in the initial random generation
is set to 50.  The size of the "steady-state gene pool" (which
is roughly comparable to the population in a traditional
"batch" generation GA) is 1000 individual programs.  The
mutation rate is zero.

The Critter

The critter model used in these experiments is a computer
simulation based on widely-used principles of computational
geometry and computer graphics.  Its simplicity and
abstraction make it an equally good (or by the same token,
equally bad) model of a living creature, or a mechanical robot,
or simply an abstract synthetic creature.

The critter moves on a two dimensional surface.  It is
essentially equivalent to the LOGO turtle [Abelson 1981].  Its
state consists of a position and an orientation.  In the
accompanying illustrations, the critter's body is depicted as
a triangle to indicate its heading.  For purposes of collision
detection, however, its body is modeled as a disk of unit
diameter.  Besides the critter itself, the world includes
various obstacles.  In these experiments, the obstacles are
represented as line segments.  A collision is when the critter
gets too close to an obstacle.  Specifically, whenever the
distance from its center point to the closest point on any
obstacle is less than one half its body length, a collision has
occurred and obstacle avoidance has failed.  Collisions are
considered to be fatal: a critter's life span is determined by
how long it can avoid collisions with all obstacles in the
world.  Figure 1 shows the critter and the obstacle course
named "Bilateral" which was used in all of the experiments
described here.



There are two kinds of motor actions in the critter's
repertoire: move forward and turn.  In the particular
problem being studied here, we will assume that forward
motion is constant and innate.  The critter will always move
forward (that is, along its own heading) by one half of its
body length each simulation step.  This implies that we are
actually dealing with the "constant-speed vision-based
obstacle avoidance" problem.

Beyond these fixed innate properties, the critter's volition
comes from its evolved control program.  Typically the
controller will use the perception primitive look-for-obstacle
to get information about the environment, do some
conditional and arithmetic processing, and then a turn based
on the result.  Most of the effective evolved control programs
contain many calls to both look-for-obstacle and turn.

Two kinds of limitation were placed on the critter's ability to turn .
The first is that if the controller specifies an excessive
turning angle it will be truncated to a "reasonable" range.  In
the experiments described here, "reasonable" is defined to
be ± 0.05 revolutions (18 degrees or 0.31 radians).
Secondly the critter will die ("from whiplash") if it turns too
fast.  This can happen despite the first limitation because the
controller is capable of performing more than one turn
operation per time step.  The fatal turn threshold used in
these experiments is ± 0.075 revolutions (27 degrees or
0.47 radians).  The result of these limitations is to give the
critter a non-zero turning radius.  The motivation is to
prevent them from spinning in place.  Strictly speaking,
spinning in place is a valid solution to the obstacle avoidance
problem.  Because  spinning is a degenerate and not
particularly interesting solution, it has been ruled out by
these limitations on turning angle.

Perception



The look-for-obstacle function simulates the critter's
perception and so is the controller's only source of
information about its world. All adaptive, time-varying
behavior must be derived somehow from the variations of
these perceptions as the critter moves through the world.
When look-for-obstacle is called, a ray-tracing operation is
performed.  That is, a geometric ray ("half line") is
constructed from the critter's position in the direction
specified by the sum of the critter's heading and the
argument to look-for-obstacle.  The intersection (if any) of
that ray with each obstacle is calculated.  The obstacle whose
ray intersection is closest to the critter's center is deemed
the visible obstacle.

In order to provide the controller with an indirect clue
about distances, we have postulated that the critter's world
is a very foggy place.  Visual stimuli are attenuated by
distance.  Certainly this aspect of the simulation can be
criticized as being ad hoc .  But the alternatives are daunting:
without attenuation, a critter surrounded by obstacles is in
a featureless environment, whatever direction it looks it
sees an obstacle.  Postulating more complicated sensory
mechanisms (such as stereo vision or texture recognition)
seemed too complex and would have introduced a new crop
of ad hoc details to be explained away.

The "foggy world" model is somewhat plausible: real fish in
murky water face a very similar perceptual realm.  The
phenomenon known as "aerial perspective" refers to
attenuation in air caused by dust and water vapor.
Simulated aerial perspective is widely used (in classical painting,
photo-realistic computer graphics, and cinematography of miniatures
for special effects) to provide a sense of distance and scale.  If
desired, say for robotic experimentation, technology exists
(in the special effects industry) for filling rooms with
"smoke" of precisely controlled density.  The last
rationalization for the foggy world model is that it is only



slightly different in effect from perception based on active
sonar as used by bats and dolphins.  A similar effect would be
obtained on a real robot using narrow-angle photoreceptors (what
photographers call "spot meters") measuring diffuse reflections from
uniformly colored walls if the only light source was located on the
robot itself.  The 1/r2 falloff of illumination with distance would
produce a result very similar to the "foggy world" model presented
here.

The value returned from look-for-obstacle is a number
between zero and one.  A value of one would indicate that
the obstacle is coincident with the critter, but this does not
occur in practice since this would imply a collision had
occurred.  As the distance between the critter and the
obstacle increases, the visual signal drops off quadratically
in strength.  At a certain threshold value (15 body lengths
in these experiments) the signal will have reached zero.
Hence a value of zero returned from look-for-obstacle
indicates that the closest obstacle in the given direction (if
any) is more than 15 units away.

In the original conception  of this project, it was imagined that
evolution would design a sort of retina consisting of a series to
calls such as (look-for-obstacle 0.1) with various constant
values used for the argument.  Hence evolution would select
the "field of view" and density distribution of the retina.  As
always, evolution turned out to have its own ideas.  There
was nothing in the problem statement that said the
argument to look-for-obstacle had to be a constant, and so
the controllers soon evolved bizarre mechanisms based on
calculating a dynamic value and using that to specify the
direction in which to look. For example one species of
obstacle avoider seemed to be based on the puzzling
expression (look-for-obstacle (look-for-obstacle 0.01)). In
hindsight it becomes clear that the correct model is not that
of a retina but rather a simple form of animate vision [Cliff
1991b] where the controller "aims" its visual sensor at the
area of interest.



Fitness

In order to test the fitness of a newly evolved control
program,  we place the critter in the world, start it running,
and measure how long it can avoid collisions with the
obstacles.  Specifically, the critter is allowed to take up to 300
steps.  The number of steps taken before collision, divided by
300,  produces the normalized raw score.

The raw score is modified by multiplication by some "style
points" (less objective criteria).  In order to encourage
critters to use generally smooth paths they are penalized
for "excessive turning".  In order to encourage symmetrical
behavior and discourage looping paths, the critters are
penalized for "unbalanced turning".  Statistics on turning
are accumulated during the run, a sum of all turn angle
magnitudes, a sum of signed turn angles, and a count of
left-versus-right steps.  A critter that made the maximum
legal turn each time step would receive the "most harsh"
excessive turn penalty of 0.5, whereas a critter that never
turned would get value of 1.0 (i.e.: no penalty).  The penalty
for "unbalanced turning" is analogous.

Using a single fitness test will produce a controller for
solving the one exact situation represented by the fitness
test.  However this solution may turn out to be very fragile
and opportunistic.  It may well have incorporated
expectations of incidental properties of the specific fitness
test.  In the case of obstacle avoidance, means that a
controller would evolve that could nimbly negotiate a given
obstacle course flawlessly, but be utterly stumped by a
slightly different obstacle course, or by starting its run in a
slightly different initial placement.

To strive for robust obstacle avoidance we need an
alternative to a single fitness test.  One solution would be to



randomize some aspect of the world, such as obstacle
placement or the critter's starting position.  This is an
appealing approach since fitness trials in nature are
effectively randomized.  When randomization was
attempted in these experiments, it became clear that the
noise injected into the fitness values made it very hard for
both the experimenter and for simulated evolution to
determine if progress was actually being made.  Another
approach is to have multiple obstacle course for each critter
to run, or the critter can make multiple runs through the
same obstacle course from slightly different starting
positions.  These both have the effect of discouraging fragile
solutions, but do not introduce uncorrelated noise into the
fitness measure.  Some other interesting  approaches are
discussed in the Future Work section below.

Results

The end result of two runs and some analysis is presented
here.  One run (named "bilat-pool-1") is as described above
but is based on a single (non-randomized) fitness test per
individual.  Figure 2 shows the "trail" of 300 steps of the
best individual after about 22000 fitness test.

Note that while this critter is capable of moving through
"wide open spaces", it displays a pronounced preference to
get close to a wall and move along it.  When observed in real
animals, this behavior is called thigmotaxis, and the term seems
equally appropriate here.  The critter seems to depart from closely
following the outside wall only when it passes the vicinity of an
obstacle on its other side.  Evolution has discovered that there is
a relatively uncluttered path around the edge of the world.
(A feature which had not been intentionally designed in by the
author.)  This critter seems content  to spend its life time
circumnavigating the world.  After some hand-simplifying
of the control program, to removed redundant or ignored
calculations, the circumnavigator is:



        (turn (- 0.1
                 0.02
                 (% 0.02
                    (look-for-obstacle 0.01))
                 1
                 (look-for-obstacle 0.1)
                 (* (look-for-obstacle 0)
                    (look-for-obstacle 0.01))
                 0.1))

An interesting technical aspect of this program is that it does not
contain any conditionals.  The GP function set used here contains the
conditional primitive iflte but in this case evolution chose to solve
the problem without it.  If a human programmer was asked to write a
controller for this problem it is very likely that the resulting program
would contain conditionals.

Because this individual avoided all collisions its raw score
was 1.0, its final score was 0.64 because it got an
unbalanced turn penalty of 0.93 (presumably because it
was turning right as it circled the world), and it got an
excessive turn penalty of 0.69, which is quite severe. The
reason for this can be seen in the "gait" this creature
developed. Looking at its trail one can see that it jitters from
side to side on almost every step.  This behavior has been
observed in many of the evolved critters.  One possible
explanation of this is that since the critter has a  limited set of
sensors,  it has many "blind spots".  A gait that causes its
sensors to sweep back and forth should provide it with
much better sensor coverage of its path.  A plot of best-of-
run fitness and population-average fitness after every
1000 individuals is shown in Figure 3.

The second example (named "bilat-repeat-1") was identical
except that its fitness function consisted of three separate
runs through the Bilateral obstacle course with three
slightly different starting positions.  All three were within
1/3 of a body length of the original starting point.  Before



the run there was some concern that these starting position
were too similar and would not present the controller with
enough variation to promote robust behavior.  In fact,
experience showed that most controllers got markedly
different fitness values for each of the three starting
conditions.  The final fitness for each individual was defined to
be the average of its three runs.

The best individual found appeared after about 31000 trials
and had not been improved upon by 39000 trials.  The
fitness of that individual was 0.22, the average of its three
runs which scored 0.46, 0.19, and 0.02.  Its average
penalties were 0.69 for excessive turning and 0.71 for
unbalanced turning.  The three overlaid "trails" for this
individual are shown in Figure 4.  A plot of best-of-run
fitness and population-average fitness after every 1000
individuals is shown in Figure 5.  The hand-simplified code
for the best-of-run individual is:

        (iflte (look-for-obstacle (look-for-obstacle 0.01))
               (* 2
                  (look-for-obstacle 2)
                  (look-for-obstacle -0.001))
               (turn (* (look-for-obstacle -0.01)
                        (look-for-obstacle 0.1)))
               (+ (turn (+ (look-for-obstacle 0.1)
                           (look-for-obstacle 0.1)))
                  (turn 0.01)))

One odd feature of this  run is that at one point the critter gets
into a quasi-periodic looping behavior.  Like spinning in place,
looping is a valid solution to the fitness function as defined
above, but it seems somewhat degenerate and does not fit
our intuitive idea of "good" critter behavior.  If we saw a real
animal behaving like this we might assume it was distressed or ill.
From a dynamic systems point of view, the semi-stable nature of this
behavior is interesting: it loops for several cycles, but then suddenly
escapes.  This suggests a sensitive dependence on certain aspects of
the environment.  The first five (?) times around that loop the



controller decided to turn left, but the last time around, displaced
only slightly from its state on the previous orbit, it decided to turn
right.

Conclusions

The preliminary results reported here represent only
partial solutions to the problem of robust vision-based
collision avoidance.  None of the behaviors evolved so far  are
robust, general purpose solutions to the full problem.  So far
the evolved behaviors seem to be either good but brittle, or
mediocre but generalized.  Thoughts about how to proceed
beyond these limitations are given in the next section.

It seems significant that while a nice solution was obtained for the
first example described above ("bilat-pool-1"), the second example
("bilat-repeat-1") seemed to converge before a good solution was
found.  Similarly, the first example attained a fitness value almost
three times higher than the second example, even though the latter
was allowed to run for almost twice as many individuals.  This
suggests that using multiple fitness cases makes the problem
significantly more difficult to solve.  It seems reasonable to conclude
that multiple fitness tests require increased generality in the
controller, and that generality tends to preclude the "easy" solutions
which are opportunistic and brittle.  The results presented here do
not fully justify these conclusions, and more work is required to
better understand these issues.

On the other hand, there is no question that vision-based
collision avoidance strategies have begun to emerge, given
only the requisite primitives, an appropriate fitness
measure, and the action of Darwinian evolution through
natural selection and survival of the fittest.

Future Work

Preliminary results from a more recent set of experiments similar to
those presented here tend to confirm the notion that adding fitness
cases increases the apparent difficulty of the problem, as can be



measured by the amount of "evolution work" (number of individuals
processed) required to find a solution to the problem.  Furthermore,
attempting to add noise to the system as suggested in [Harvey 1993]
seems to significantly increase the difficulty of the problem.

Future work in this area needs to investigate the effect of noise in
controller programs.  A systematic comparison should be made
between the effect of using the average or the minimum of the
multiple values obtained in fitness testing.  This has been done in the
neural net domain in  [Harvey 1993] and we would like to compare
those results to what happens in the GP domain.

As was noted above, spinning  or looping behavior is in some sense
degenerate and undesirable.  To incorporate this bias, an
alternative measure of fitness would be to keep track of how
much area the critter has covered before collision.  This
could be accomplished, for example, by overlaying a grid on the
critter's world and setting a flag in each grid cell the critter visits.  The
number of flagged cells would be a quantized approximation of area
covered.  Using this measure instead of, or in addition to, the
number of steps taken before collision would promote
collision-free paths that do not cross over themselves
repeatedly.  This "exploratory  obstacle avoidance" criteria may
yield a more interesting kind of behavior.

While the obstacles used in these  experiments are static,
nothing in the model depends on that fact.  The critters
have no maps of the world nor memory of any kind.  As a
result, their obstacle avoidance strategies are completely
reactive [Brooks 1990] so we would expect them to be able
to deal equally well with dynamic obstacles.  An interesting
variant of the current experiment would be to evolve
avoidance in the presence of obstacles that move, or that
appear and disappear "at random."

It is anticipated that better, more robust, obstacle avoidance
strategies could be obtained by using a sequence of ever
more challenging obstacle courses.  But that approach puts a



significant burden on the human designer of the obstacles.
First,  there is the work involved in creating some large
number of increasingly complex obstacle avoidance test
cases.  Second , as the critters become proficient at obstacle
avoidance, it would become increasingly difficult to come up
with obstacle courses that would challenge them.  These
considerations suggest that perhaps the obstacles should be
seen as predators or parasites that coevolve with the
critters.  This kind of coevolution of problem-solvers and
problem-poser has been examined in [Hillis 1990].  The
"fitness" of an evolved obstacle would be judged by how well
it could frustrate a critter's attempts at collision avoidance.
In the confrontation between a given critter and obstacle, a
collision early in the simulation would reflect poorly on the
critter and well on the obstacle.  Conversely, a collision late
in the simulation (or the absence of a collision) reflects well
on the critter and poorly on the obstacle.
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