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Table 1:
competitive architecture matches per generation of n opponents per individual reference
new versus all (n2-n)/2 n-1 [Koza 1992]
new versus several nk k this paper
single elimination tournament tree n-1 log2 n [Angeline 1993]
new versus previous best n 1 [Sims 1994]
new versus new n/2 1 [Smith 1994]
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Abstract
Tag is a children’s game based on symmetrical pursuit
and evasion.  In the experiments described here,
control programs for mobile agents (simulated
vehicles) are evolved based on their skill at the game
of tag.  A player’s fitness is determined by how well it
performs when placed in competition with several
opponents chosen randomly from the coevolving
population of players.  In the beginning, the quality of
play is very poor.  Then slightly better strategies begin
to exploit the weaknesses of others.  Through
evolution, guided by competitive fitness, increasingly
better strategies emerge over time.

1.  Introduction

Many of us remember playing the game of tag as children.
Tag is played by two or more, one of whom is designated as
it.  The it player chases the others, who all try to escape.
Tag is a simple contest of pursuit and evasion.  These
activities are common in the natural world, most predator-
prey interactions involve pursuit and evasion.  Tag also
includes an aspect of role-reversal, both pursuit and evasion
skills are required.  It’s goal is to catch up with another
player, to get close enough to reach out and touch the other
player.  At this point the pursuer shouts “Tag!  You’re it!”
and the former evader becomes the new pursuer.

The game of tag serves here as a toy example, to study the
use of competitive fitness in the evolution of agent behavior.
Tag is intended as a simple model of behavior based on
control of locomotion direction, or steering.  By evolving a
vehicular steering controller for the game of tag we have a
test case to learn about evolving controllers for related, but
more complex tasks.

We seek to automatically discover a controller through
evolution based solely on competition between controllers.
This approach stands in contrast to evolving controllers by
pitting them against a static, predetermined expert strategy.

The use of competitive fitness has the significant advantage
of avoiding the paradoxical need for an expert controller as
a prerequisite for evolving an expert controller.  Another
advantage of competitive fitness is that since each fitness
test is unique, there is no danger of overfitting a static
expert.

2.  Related Work

This research was originally inspired by Pete Angeline’s
elegant work on coevolution of players for the game of Tic
Tac Toe, using competitive fitness [Angeline 1993].  That
fitness could be tested by competition alone, even in the
absence of an expert player, is a key insight in applying
evolutionary techniques to the discovery of complex goal-
directed behaviors.  The work reported here extends
Angeline’s paradigm from games of pure strategy to those
involving geometric motion.  The competition in [Angeline
1993] was in the form of a single elimination tournament
tree.  The players in each new generation were paired up in
competition.  The winners of each pairing went on to a
second round, and so on for several rounds until only one
champion remained.  A player’s fitness was determined by
the number of matches won before a defeat.  See Table 1 for
a comparison of several competitive architectures described
in this section.

A similar approach has recently been used to coevolve
strategies for the game of Othello [Smith 1994].  A genetic
algorithm was used with competitive fitness to determine
time-varying weightings for the static evaluator used in an
alpha-beta search of the Othello game tree.  In this work,
two new players are placed in competition with each other,
the score of their game determines the fitness of both.

Another paper on competitive evolution of behavior
appears elsewhere in this volume [Sims 1994].  It describes
experiments where the morphology and behavior of
artificial creatures evolve through competition for control of
an inanimate object.  The creatures each try to get closest to
the object, and if possible to surround it.  Each new creature



is placed in competition with the best creature from the
previous generation.

John Koza evolved pursuer-evader systems closely related
to those reported here (see pages 423-428 of [Koza 1992]).
But in that work the pursuers and evaders existed in separate
populations.  Their fitness was determined by comparison
with a pre-existing optimal player.  In the same book, Koza
first discusses coevolution in Genetic Programming (pages
429-437) in the context of a discrete strategy game.

In the work reported here, the vehicle model, and the
noise-tolerant Steady-State Genetic Programming system
was taken from [Reynolds 1994a] and [Reynolds 1994c].
The vehicle model draws heavily from [Braitenberg 1984]
and is equivalent to the turtle of the LOGO programming
language.

Competitive fitness and coevolution were first explored in
evolutionary computation in the context of the Iterated
Prisoner’s Dilemma in [Axelrod 1984], [Axelrod 1989],
[Miller 1989], [Lindgren 1992] and [Lindgren 1994].  A
restricted form of competitive fitness was used in [Hillis
1992] to drive the evolution of sorting networks:
antagonistic test cases were coevolved to force generality.
Coevolution and competitive fitness are fundamental to a
wide class of ecological simulations studied in Artificial
Life such as: ECHO [Holland 1992], Tierra [Ray 1992],
BioLand [Werner 1993], PolyWorld [Yeager 1994], LEE
[Menczer 1994], and the work reported in [D’haeseleer
1994].  Chapter six of [Kauffman 1993] is an authoritative
analysis of “The Dynamics of Coevolving Systems.”

The reader should understand that this work is not about
optimal control theory, despite the fact that frequent
mention is made of optimal  strategies, and that this type of
pursuer-evader system has a long history in the optimal
control literature [Isaacs 1965].  The work reported here
benefits from (but does not depend upon) the ability to
compare evolved behavior with optimal behavior.  It should
be noted that this is practical only because of the extremely
simple vehicle model used in these studies.  Once slightly
more complicated models are used, optimal behavior
becomes a much more complicated issue, see for example
[Merz 1971].

3.  Experimental Design

In this work, Genetic Programming is used to evolve control
programs for simulated vehicles, based on their ability to
play the game of tag.  Each new player’s fitness is
determined through competition with existing players.  The
game of tag provides a framework wherein the relative
fitness of two players is judged through direct competition.

The vehicles are abstract autonomous agents, moving at
constant speed on a two dimensional surface.  Each
vehicle’s evolved control program is executed once per
simulation step.  Its job is to inspect the environment and to
compute a steering angle for the vehicle.  Angles are
specified in units of revolutions, a normalized angle
measure: 1 revolution equals 360 degrees.

For each player, at each simulation step: (1) its control
program is run to determine a steering angle, (2) the

vehicle’s heading is altered by this angle, (3) the vehicle is
moved a fixed distance along its new heading, and (4) tags
are detected and handled.  The forward step length is
typically 125% longer for it.  The per-step steering angle is
unconstrained: these vehicle can instantaneously turn by any
amount.  This is an abstract kinematic vehicle model, as
opposed to a physically realistic model.  In this work there
is no simulation of force, mass, acceleration, or momentum.
In contrast, a physically realistic model would serve to limit
the turning radius.

In these experiments there are always two players in a tag
game.  The playing field is featureless.  Each vehicle’s
environment consists of just one object: the opponent
vehicle.  The opponent’s current heading is not relevant.  In
the absence of momentum, there is no correlation between
the vehicle’s current heading and its position in the next
time step.  For a given controller the entire state of the world
consists of: a flag indicating who is it, and the relative
position of the opponent’s vehicle.  The position
information is presented to the control program in terms of x
and y coordinates of the opponent, expressed in the local
coordinate system of the controller’s own vehicle.  A
vehicle’s local coordinate system is defined with the
positive y axis aligned with the vehicle’s heading and the
positive x axis extending to the vehicle’s right.  See Figure
1.
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Figure 1: the input to a vehicle’s controller is the position of the
opponent vehicle, expressed in terms of local x and y coordinates.

While the traditional game of tag has no formal method of
scoring, the intuitive goal is to avoid being it.  Therefore,
fitness is defined here to be the portion of time (simulation
steps) spent not being it.  Note that this is a normalized,
bigger-is-better fitness metric: zero is worst, one is best.  To
determine a player’s fitness it competes with other players.

To compare two players, a series of four games is played.
Before each game the players are given random initial
headings and are randomly positioned within a starting box
measuring about 3.5 vehicle-body-lengths on a side.  The
two players alternate starting as it for each game of the



Table 2
function usage description source
+ (+ a b) a plus b Common Lisp
- (- a b) a minus b Common Lisp
* (* a b) a times b Common Lisp
% (% a b) if b=0 then 1 else a divided by b [Koza 1992]
min (min a b) if a<b then a else b Common Lisp
max (max a b) if a>b then a else b Common Lisp
abs (abs a) absolute value of a Common Lisp
iflte (iflte a b c d) if a ≤ b then c else d [Koza 1992]
if-it (if-it a b) if this player is it then a else b this paper

series.  If it tags the opponent, by getting to within one
vehicle length, the it and non-it roles are reversed.  Each
game consisted of 25 simulation steps.  A player’s score for
a game is the number-of-non-it-steps divided by 25.  See
Figure 2.

To determine a player’s fitness, it is pitted against 6 other
players.  These opponents are chosen by uniform random
selection from the existing population.  Scores from these 24
games (a series of 4 games against each of 6 opponents) are
averaged together to obtain the final fitness value.  A value
of 50% indicates that the player has an ability comparable to
the population average.  Fitness values above 50% indicate
increasingly better players.  Because opponents are
randomly selected, and because initial conditions are
randomized, these fitness values have significant variance
and provide only a rough estimate of a player’s actual
fitness.

player 2 starts as it player 2 tags player 1

player 1 starts

player 2 ends player 1 ends as it

Figure 2: a game of tag between player 1: an evolved
controller from run G, and player 2: the optimal strategy.  As
in all such diagrams in this paper, the pursuer (it) is shown in
white, the evader is gray, and the site of a tag is indicated by a
circle.  Player 1 is shown here with a concave back edge and
player 2 has a convex back edge.  In this game player 1 begins
by fleeing in a naive direction.  Player 2 chases down and tags
player 1.  Player 2 then escapes because player 1 is too slow
turning around.  Player 1 was not it for 14 of the 25 steps so
earned a score of 56%.  Player 2 was not it for 11 steps so
scored 44%.

In the discussion of experimental results below, reference
will be made to an optimal player.  Because of the
unrealistically simple vehicle model used here, particularly
the absence of momentum, the optimal strategy is quite
straightforward.  For the pursuer, the optimal strategy is to
turn toward the evader (so the evader lies on the pursuer’s
positive y axis).  Similarly the optimal strategy for the

evader is to turn directly away from the pursuer (so that the
pursuer lies on the negative y axis).

The “four quadrant arctangent” implements this optimal
strategy.  However the fitness criterion in these experiments
is performance in tag competition.  The optimality of a
given controller is irrelevant to its fitness, all that matters is
its performance in tag competition with the coevolving
population.  As will be seen below, controllers which are
clearly non-optimal can still produce behavior which is
asymptotically close to optimal performance.

4.  Genetic Programming and Tag

The technique used to evolve computer programs in this
work is known as Genetic Programming (“GP”), invented
by John Koza.  The best reference on this technique and its
application is [Koza 1992].  In its original formulation, GP
operated on a population of individuals generation by
generation.  Alternatively, GP can be combined with Steady
State Genetic Algorithms [Syswerda 1991] as described in
[Reynolds 1993a].

A very brief description of Steady State Genetic
Programming (SSGP) follows.  First a population of random
programs is created and tested for fitness.  In these
experiments the population consisted of 1000 to 5000
programs.  Thereafter SSGP proceeds by: (1) choosing two
parent programs from the population, (2) creating a new
offspring program from them, (3) testing the fitness of the
new program as described in the previous section, (4)
choosing a program to remove from the population to make
room, and (5) adding the new program into the population.
The parent programs are chosen in a way that favors the
more fit while not totally ignoring the less fit, thus balancing
exploration of the whole gene pool with exploitation of the
current champions.  In these experiments this choosing is
done using tournament selection: seven individuals are
chosen from the population at random, the most fit of those
is selected as the winner.  The recombination of two parents
to form a new offspring is accomplished by the Genetic
Programming crossover operator.  GP crossover is a bit like
“random cut and paste” done on balanced parenthetical
expressions to guarantee the new program’s syntactic
correctness.  After crossover, a program might be mutated
by substituting one function for another, one terminal for
another, or by crossover with a new random program
fragment.

Selecting a program to remove from the population could
be done by using inverse tournament selection: removing



Table 3:
run name population size it speed ratio program size limit mutation used segregated branches opponent selection

A 5000 1.00 50 no yes uniform
B 2000 1.25 50 no yes uniform
C 1000 1.25 50 yes yes uniform
D 1000 1.25 50 yes yes tournament
E 1000 1.25 50 yes no uniform
F 1000 1.25 50 no no uniform
G 1000 1.25 100 no no uniform

the least fit of seven randomly chosen programs.  However
the greedy nature of SSGP, combined with the variance of
fitness measures used in these experiments, leads to the
possibility of a mediocre-but-lucky program receiving an
undeservedly high fitness and going on to dominate the
population.  To combat this possibility, a modified removal
policy was used in these experiments: half the time inverse
tournament selection was used, the other half of the time an
individual was selected for removal at random (without
regard to fitness).  All programs, even the best one, has a
certain small but non-zero probability of being removed at
each SSGP step.  This approach reduces the possibility that
the population could stagnate with a collection of mediocre-
but-lucky programs.  To survive, winning strategies must
continue to perform well.

Another issue is that competitive fitness values are
measured relative to the population at a certain point in
time.  These fitness value becomes less and less relevant as
time passes.  The hybrid SSGP removal policy ensures that
the population is continually being recycled.

Because steady state genetic computation proceeds
individual by individual, there is no demarcation of
generations.  However it is often convenient to describe the
progress or length of a SSGP run in terms of “generation
equivalents:” processing as many new individuals as there
are programs in the population.

In order to evolve tag-playing control programs with
Genetic Programming, we first choose a set of functions and
terminals to form the language in which they will be
expressed.  Certain choices are dictated by the application
itself, and some are intended to provide the logical and
arithmetic “glue” with which GP will construct control
programs.  Three functions used here are specific to the
underlying application, they provide the three parameters for
the control programs.  local-x and local-y are functions of
zero arguments which return the x and y coordinates of the
opponent player.  The if-it macro provides conditional
execution of its two subexpressions depending on whether
this player is currently it.  In addition to these functions,
several others are provided to help form control programs.
The choice is rather arbitrary, it was influenced by the
author’s domain knowledge and by preliminary attempts to
write a tag-playing control program by hand.  This function
set provides for arithmetic, thresholding, sign manipulation,
and conditional computation, see Table 2.

In addition to (local-x) and (local-y) mentioned above,
the terminal set includes :random-0-1, an ephemeral
random constant.  After a new program is formed, any
occurrences of this terminal are replaced by a pseudo-
random floating point number between 0.0 and 1.0.

Evolved programs are subject to a size limitation which is
measured in term of the total number of functions and/or
terminals.  When crossover produces a program whose size
exceeds this limit, the hoist genetic operator [Kinnear 1994]
is used to find a smaller (but hopefully still fit)
subexpression.  In these experiments the size limit was
either 50 or 100.

These experiments used the if-it conditional in two
different ways.  In the early runs, a syntactic constraint was
used to ensure that evolved programs always contained
exactly one occurrence of if-it and it was always at the top
(outermost) level of the program.  That is, all programs in
those runs had this structure:

(if-it <pursuer-branch>  <evader-branch>  )
The GP crossover operation was modified to exchange code
fragments only within branches of the same type.  With this
constrained structure and crossover, the effect is to create
two distinct gene pools, one for pursuit behavior and one for
evasion behavior.  Thus the frequency of code fragments are
allowed to evolve differently in each population.  This
approach is similar to the Automatically Defined Functions
described in [Koza 1992].

In later experiments this syntactic constraint was removed
and the if-it conditional was treated as just another non-
terminal.  As a result there could be any number of if-it
forms in an evolved program.  There was no segregation of
the gene pool, code fragments could cross over from the
pursuit branch to the evasion branch, and vice-versa.

The Genetic Programming substrate used here was
originally developed by the author on Symbolics Lisp
Machines and subsequently ported to Macintosh Common
Lisp (version 2.0p2).  These experiments were run on
Macintosh Quadra 950 workstations.  In this implementation
a fitness test consisting of 24 tag games takes 7 to 12
seconds to run, depending on program size.

5.  Results

Seven evolution runs were performed using the basic
experimental design described above.  The runs varied in
terms of population, the relative speed of the two players,
the program size limit, whether mutation was used, whether
the it/not-it branches were segregated, and the method used
for selecting opponents.  See Table 3.  Runs A, C and G will
be discussed in more detail in the following sections.

5.1  Run A

Run A had a population of 5000 individuals.  Both players
moved at the same speed.  This puts it at a fundamental



disadvantage: as long as the other player moves away, the
best it can do is to follow at a constant distance, unable to
close the gap.

Most of the initial, random programs in run A used
ineffective strategies.  A typical behavior was to bumble
around aimlessly.  Some of the early programs effectively
had no steering behavior.  These control program always
returned zero (or some very small value) and the vehicle
would simply travel in a straight line.  While this is not a
very effective pursuit strategy (for it), it is occasionally a
good evasion strategy.  If it happened to start off positioned
behind you, running straight ahead is essentially optimal
evasion.  Since initial position and orientation is random,
this non-turning evasion behavior would be effective
between one-half and one-quarter of the time, depending on
how good its pursuit strategy is.  As a result, early in the run
these non-turners began to proliferate through the
population of evasion strategies.

Figure 3: pursuit and evasion from run A in which both players
moved at the same speed.

At this early stage, the most effective pursuit strategies
appear to have been looping (constant steering angle) and
“stumblers” that seemed to move erratically, but managed to
creep slowly towards their target.  The looping behavior was
successful because it allowed the pursuer to cover more

ground, increasing its chance of blindly tagging the evader.
The stumblers, while quite inefficient when compared to
optimal pursuit behavior, were able to survive by preying on
incompetent, aimless evaders.  The large number of bad
strategies in the population provided fertile ground for
innovation: new strategies, even inefficient ones, could
prosper by exploiting the weaknesses of others.

Later in run A, an improved evasion strategy appeared.
The gist of it was: if the pursuer is behind you, go straight
ahead, otherwise turn randomly.  The effect is that the
evader would twitch randomly for a few steps, then it would
find itself pointing away from the pursuer and head straight
away.  Not only is this a fairly robust strategy, but it was
easily implemented (hence easily evolved) in the
programming language used in these experiments:

(if-it <pursuer-branch> (max 0 (local-y)))

This code fragment, and many variations of it, appeared in
the population.  Most of the variations were larger
expressions which were functionally equivalent.  Once this
simple but effective evader appeared, the pursuers were in
trouble.  Because of the advantage mentioned earlier, that
the evader need only move away from the pursuer in order
to win, the pursuers could only achieve mediocre
performance.  In general the quality of pursuit in run A
improved.  The pursuers got to be very good at picking off
the easy targets, the inefficient evaders.  But this only served
to improve the gene pool of the evaders.  Soon only fairly
good evaders remained, and they could easily escape from
the best of the pursuers.

This sounds like it might have been the end of the story,
but something interesting happened.  In the interval between
individuals 57000 and 76000, the pursuers developed
several different techniques for following their targets, each
with a characteristic and visually distinct pattern of motion
(see Figure 3).  Each of these patterns of motion had to have
a certain measure of success to survive, but none could
overcome the built-in advantage of the evaders in run A.
There is a temptation (unsupported by any data) to see these
distinct patterns of motion as something akin to evolutionary
stable strategies (or perhaps species in environmental
niches).  It is also possible that these classes of motion arose
solely as artifacts of the function set used in the GP
representation.

One pursuit strategy seen in this run (and others) used a
competent but inefficient “three phase” technique.  These
players would always do one of three things: turn left, turn
right, or turn around.  It is inefficient because turning left or
turning right is a good idea only if the quarry is off to the
side.  If your opponent is directly ahead, a zig-zag path will
slow your rate of progress.  The code below is the pursuit
branch of individual number 179120, unedited except to add
comments:

(iflte 0.029628         ; if y > 0  (quarry ahead)
       (local-y)        ;
       (iflte 0.212021  ;   if x > 0.2  (quarry on right)
              (local-x) ;
              0.862946  ;      turn 49 degrees to right
              0.134561) ;      turn 48 degrees to left
       0.541760)        ;   turn 195 degrees (about face)



As evolution in run A proceeded, the evaders developed
an unexpected behavior.  For the majority of them life was
easy, they could usually escape the pursuers.  (Those who
could not were quickly killed off.)  One might guess that the
evader population would settle down into using a simple,
efficient strategy.  Instead it seems that they had an
overabundance of genetic material and were determined to
use it!  They adopted a complicated, elaborate strategy.
Because both players move at the same speed, the pursuer is
not a threat until it moves close to the evader.  This defines a
certain “threat radius” around the evader.  If the pursuer is
outside this radius it doesn’t matter what the evader does, it
could just as well bumble around aimlessly.  Once the
pursuer crosses the threat radius the evader must snap to
attention and run away efficiently.  These elaborate evaders
are very large programs and hard to analyze in detail.  One
possible explanation is that an effective evasion strategy was
discovered, but its implementation depended on the values
of local-x and local-y being limited to certain small values.
The result was an evader that would flee very efficiently
when closely pursued, but otherwise would appear to
randomly flip around.  Subjectively this behavior looked for
all the world like the evader was “saving its strength” --
moving slowly until the pursuer got close enough to be a
threat.  Yet this could not have been what actually
happened, since there was no modeling of expended energy,
nor did the fitness function reward conservation of energy.

A note about the selection of games shown in, for
example, Figure 3.  The choice of images for this paper was
a biased, subjective process.  An unedited random sampling
of images from the run might have been more
representative, but would have been much less visually
interesting.  These “photogenic” images were chosen
because of their clarity, simplicity, and visual appeal.
Several were typical, a few were unusual.  Collecting these
images was a process somewhat like nature photography.
Lots of pictures were taken, many were discarded, and a few
were selected that captured the spirit of the behavior.

5.2  Run C

Evolution of pursuit in run A was stymied by the evader’s
advantage.  Run C sought to even out the competition by
giving it a 25% speed advantage.  Now a good pursuer could
close in on and tag a good evader.  This served to encourage
efficient pursuit, which in turn encouraged improved
evasion.

Run C used a population of 1000.  Mutation was added in
an attempt to help prevent the loss of diversity observed in
earlier runs.  Run C was evolved for 215 generation
equivalents.  The quality of pursuit and evasion improved
steadily, becoming skillful and well matched.  Many games
consisted of a chase featuring near-optimal pursuit and
evasion followed by a series of rapid tags with it alternating
back and forth each step.  After each tag the new it would
just turn around, take one big step, and tag the other player.
This was reminiscent of the games seen when two optimal
players were pitted against each other.

Figure 4: tag games from run C.  Most consist of a successful
chase followed by a series of tags.
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Figure 5: plot of the fitness of the optimal player placed in
competition with the evolving population of run C.  Since fitness is
measured relative to the existing population, the decline in fitness
shown here is indicative of the increasing average fitness of the
population.  Initially the optimal player avoided being it 93% of the
time.  After 22000 individuals (22 generation equivalents), the
optimal player is it about 60% of the time.  Thereafter the value
drifts slowly down into the range between 55 and 60%.
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Figure 6: plots of best-of-population fitness (top) and average-of-
population fitness (bottom) for 215 generations of run C.

After 215415 individuals were processed in run C there
were four individuals with the same best fitness value.  One
of those was selected for further analysis.  It was compared
to the optimal player in a series of 100 games.  The evolved
player got a score of 49.3% indicating that was holding its
own against the optimal player, being not-it just less than
half of the time.  The evolved program’s size was 48.  A few
simplifications were made by hand to produce this size 38
version:

(if-it (max (% (local-y)
               (+ (min (local-y)
                       (min (abs (local-y))
                            (iflte 0.25235322
                                   (local-y)
                                   (* 0.09556236
                                      (local-x))
                                   (local-x))))
                  (local-y)))
            0.25235322)
       (iflte (local-y)
              0.0055459295
              (iflte (local-y)
                     (* (local-y)
                        (min (* (local-x) (local-x))
                             0.47677472))
                     (* 0.051421385 (local-x))
                     (* 0.107852586 (local-x)))
              0.47677472))

To visualize the overall behavior of a player's evolved
control program, the two inputs can be used to define a
perceptual field embedded in the local space surrounding the
vehicle.  Mapping the control program over a mesh of points
in this field yields an array of steering angles.  This map
describes the stimulus-response relationship implemented
by the control program as it maps an opponent’s position
into a steering angle.

Figure 7 shows plots of this relationship for the optimal
player.  Each arrow in this diagram indicates the player's
steering angle response to an opponent in the vicinity of the
arrow's tail.  Figure 9 summarizes the behavioral mapping

for an evolved player from run C.  This useful visualization
tool has long been applied to the study of reactive robotic
control system in the work of Ronald Arkin, see for example
[Arkin 1987].
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Figure 7:  Plots of steering angle versus opponent position for
the optimal player.  These stimulus-response diagrams

summarize the player's behavior.
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Figure 8: histogram of fitness distribution in population
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An examination of Figure 9 suggests that a "foveal region"
has developed in the perceptual field of both pursuer and
evader.  In the pursuer the forward facing quadrant has a
near-optimal structure.  In the evader the backward facing
quadrant (particularly in the region close to the player and
along its negative y axis) has a near-optimal structure.
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Figure 9:  Plots of steering angle versus opponent position for
the best-of-population player from run C after 215 generation

equivalents

Figure 9 also indicates that in the "anti-foveal" direction
the response is simply to turn halfway around.  The pursuer
will turn around if the evader is behind it, and the evader
will turn around if the pursuer is in front of it.  The general
strategy appears to be to turn "quickly" toward (or away
from) the opponent, to place them in your foveal region,
wherein your response is close to optimal.  The behavior is
less organized in the direction perpendicular to the foveal
axis, but the effect seems to be the same: after a step or two
the vehicle is heading in the right direction.

Since the vast majority of the player's time is spent in this
nearly optimal foveal region, there is correspondingly less
selection pressure to "optimize" the behavior in other
regions.  This is particularly true given the relative small
number of steps executed in these simulations.  For

example, sometimes an evader escapes because its behavior
is more efficient, but sometimes it escapes because the 25
steps of the simulation have expired.  There are very few tag
games where non-optimal behavior in the off-foveal regions
makes a measurable difference in fitness.

5.3  Run G

Run G did not segregate the pursuer and evader code and
used a larger limit on program size.  One of the changes
seemed to make the problem harder to solve.  The syntactic
constraint used in earlier runs is a user-provided “hint” that
there are two distinct cases to solve.  This may lower the
difficulty of the problem.  Further comparisons of more runs
would provide more reliable information about difficulty.
Figure 10 shows the performance of the G population
against the optimal player.  Comparing this to Figure 5
shows that run C generally did better sooner.
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Figure 10: plot of the fitness of the optimal player placed in
competition with the evolving population of run G over 123

generation equivalents.

Individual 113520 of run G was the best of population
when it was created.  The size 98 program is listed below.
Its stimulus-response map is shown in Figure 11.  This
individual has many strange behavioral traits, for example
pursuit behavior has a reasonable two phase strategy for
opponents up to 5 units ahead but is very inept for
opponents further away.  The evasion behavior is strongly
asymmetrical.

(% (% (if-it (abs (local-x)) (iflte (iflte (local-x)
0.57168305 (local-x) (+ (iflte (local-y) (iflte (local-y)
(if-it (local-x) (abs (local-x))) (iflte 0.40530929
0.26004231 (abs (local-x)) (local-y)) (if-it 0.40530929
0.57168305)) (min (abs (local-x)) (+ (local-x) (local-
x))) (local-x)) (local-x))) 0.57168305 (local-x) (+
(iflte (local-y) (iflte (local-y) (if-it (local-x)
(local-x)) (iflte 0.40530929 (local-x) (abs (iflte
(local-x) 0.37254661 0.32281655 (local-x))) (local-x))
(if-it 0.40530929 (abs (local-x)))) (min 0.1637349 (iflte
(local-x) (local-y) (abs (iflte (abs (local-x)) (max (if-
it (local-y) (abs 0.53183758)) (local-x)) 0.32281655



(local-x))) 0.53183758)) (local-x)) (local-x)))) (+
(local-x) (local-x))) (iflte (- (abs 0.53183758) (if-it
(% 0.57168305 (local-y)) (- 0.1637349 (local-y))))
0.40530929 (abs 0.53183758) 0.83426005))

6.  Conclusions

Using the game of tag to test relative fitness, artificial
evolution was able to discover skillful tag players in the
form of vehicle-steering control programs.

These near-optimal players arose solely from direct
competition with each other.  Good results were obtained
despite the considerable variance of fitness values inherent
in the staging of individual games and the random selection
of opponents.  Fitness was based only on relative
performance and did not require knowledge of the optimal
strategy.
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Figure 11:  Plots of steering angle versus opponent position
for the best-of-population player from run g after 113

generation equivalents

Since the optimal strategy was known for the problem
studied here, it could be used as a benchmark.  The player
population evolved according to relative competitive fitness.
Its progress in absolute terms could be measured by placing
the evolved players in competition with the optimal player.

Figure 12: tag games from run G.  A common flaw with all of
these players is that they tend to have only two forward
steering directions.  Efficient pursuit and evasion require the
ability to modulate turning angle.  Some of these strategies
look nothing like optimal behavior.  They survive because
they have adapted to their environment.  For example the
pursuer (in white) in the lower right image could never catch a
good evader, but it is well suited to mowing down
incompetent evaders.



Attempts to characterize the quality of evolved players are
subject to differences of interpretation, but in at least one
experimental configuration (run C) the population’s average
performance was within 10% of the optimal player, and the
best of population individual performed within a few
percentage points of optimal.  Note that these quality
metrics are only as meaningful as the somewhat ad hoc
fitness measure used in these experiments.

In other runs described here, the quality of evolved players
approached, but did not reach, that of the optimal player.  It
is not clear if this is because of a fundamental limitation of
competitive fitness, a flaw in the experimental design, or
simply because of limitations of genetic population size and
length of runs.

7.  Future Work

These experiments used a simple competitive behavior to
test the concept of self organizing development of goal-
directed behavioral control programs.  The generally
positive results found here encourage plans for more
ambitious future projects.

Eventually the goal is to apply this technique to more
complex games.  But first, a more elaborate version of the
game of tag is an obvious next step.  A more complicated
control problem, and a more visually interesting class of
motion, would result from adding momentum to create a
physically realistic model of vehicle motion in place of the
current kinematic model.  In a physically based model, the
angle returned from evolved control programs would be
interpreted as the direction of steering force to be applied to
the vehicle’s current momentum.  If tag playing vehicles
have momentum, their velocity and acceleration become
relevant to the control problem.  In the real world, the game
of tag is usually played with multiple players and in the
presence of obstacles.  Adding these features, and sensory
facilities for dealing with them, would create a rich
environment for future studies.  In place of the isolated,
episodic, pair-wise tag games used in this work, it would be
interesting to investigate an ongoing ecological simulation
where a large population of agents interact with each other
through the game of tag.

In [Angeline 1993] a individual’s competitive fitness is
determined in a single elimination tournament involving a
generation’s entire population.  In the current work
competitive fitness is tested against a randomly selected
subset of the existing steady-state population.  Several
arbitrary choices where made when this selection
mechanism was designed.  Six opponents are selected with
uniform random distribution.  Is six too many or too few?
Should the selection be skewed toward higher fitness
opponents (say by tournament selection) as when parents are
selected for crossover?  Would judging fitness against the
current leaders tend to improve evolvability or stifle it?
This approach was attempted in run D but the results were
inconclusive.  On the other hand this approach is similar to
that used in [Sims 1994] which produced good results.

Another approach to steady-state competitive fitness
would be to use Angeline’s technique of determining fitness

based on standings in a single elimination tournament tree,
but to do it in small batches of newly created individuals.  A
batch of 16 or 32 new individuals would be created, then
pitted against each other in a single elimination tournament
tree.  Their standings in competition with their own litter-
mates would determine their fitness.  This approach is
similar to that used in [Smith 1994] but would allow fitness
values to reflect competition with a wider range of
opponents.

The delightful variety of strategies that appeared in these
experiments demonstrate that there are many, many way to
approach a given task.  The road to successful behavior may
lie along any of those variations.  The most robust
evolutionary systems are those that can pursue many
approaches at once.  Geographically distributed, deme-based
systems promote diversity and parallelism.  They seem well-
suited to competitive evolution of behavior [Ngo 1993]
because the quality of competition is better when diversity is
preserved.
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