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Abstract This article presents an abstract computation model of evolutionary computation, genetic
the evolution of camouflage in nature. The 2D model uses evolved programming, texture synthesis, vision

te);tures. fl':):l prey a bﬁkﬁromd tzture reprt?scntmfh the enmmnme;nt, A version of this paper with color figures is
and a visual predator: uman observer, actn.1g as the predator, is available online at bitp: ld.doi.org/10.1162/
shown a whort of 10 evolved textures overlaid on the background artl_a_00023. Subscription required

texture. The observer clicks on the five most conspicuous prey to
remove (“eat”) them. These lower-fitness textures are removed
from the population and replaced with newly bred textures.
Biological morphogenesis is represented in this model by procedural
texcture synthesis. Nested expressions of generators and operators
form a texture description language. Natural evolution is
represented by genetic programming (GP), a variant of the genetic
algorithm. GP searches the space of texture description programs
for those that appear least conspicuous to the predator.

| Introduction

That animals often resemble their environment has been observed since ancient times. This sometimes
startling visual similarity highlights the adaptation of life to its environment. Since the eatliest publication
on evolution, camouflage has been cited as a key illustration of natural selection’s effect:

When we see leaf-eating insects green, and bark-feeders mottled-gray; alpine ptarmigan
white in winter, the red-grouse the colour of heather, and the black-grouse that of
peaty earth, we must believe that these tints are of service to these birds and insects
in preserving them from danger.—Charles Darwin, 1859, On the Origin of Species |9)

Natural camouflage appears to result from coevolution between predator and prey. Many pre-
dators use vision to locate their prey, so prey have a survival advantage if they are harder to see.
Predators with superior vision are better able to find prey, giving them a survival advantage. Over
time this leads to well-camouflaged prey and to predators with excellent eyesight and a talent for
breaking camouflage.

The hypothesis for these experiments was that selection pressure from a visual predator will
gradually eliminate the most conspicuous (least well camouflaged) prey from the evolving popula-
tion. Prey would then converge on more effective camouflage. The results presented here in Fig-
ures 1, 2, and 3 lend support to this idea and point the way to more powerful human-computer
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new library for procedural texture synthesis






Uniform red(1l, 0, 0):;
Uniform green(0, 1, 0);
Uniform blue(0, 0, 1):




Vec2 pl(@ 3, 0);
Vec2 p2 = pl.rotate(2 x p1 / 3);
Vec2 p3 = p2.rotate(2 x p1 / 3);

0.6;
ro - 0.02;

float ro
float ri

Spot rs(pl, ri, red, ro, black); -
Spot gs(p2, ri, green, ro, black);
Spot bs(p3, ri, blue, ro, black);




Add(rs, Add(gs, bs))










Spot(Vec2(0, 0),

0.1,

Furbulence(0.1,
Vec2(1, 2),
Uniform(1l, 1, 1),
Uniform(0.7, 0.7, 0)),

0.9,

Turbulence (0.2,
Vec2(-5, 7)),
Uniform(0, 0, 0),
Uniform(0.3, 0.3, 1))))










eye canay:
examples of operators
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ibrary for evolutionary computation



e evolutionary computation
e genetic programming

o steady state population
e absolute fithess
e elitism
e tournament relative fithess

* negative selection
* genetic drift



— red (average) green (average) — blue (average) — red (best) -~ green (best) — blue (best)




TexSyn LazyPredator



Random GP program generation

This (Other (9, 0),
That (This(This(This(Other (8, 2),
This (Other (5, 9),
Other (3, 8
Other (3, 1)),
That (This(This(Other (6, 1),
Other (8, 1
Other(4, 0))
This(Other (3, 2),

4

That (This(Other (9, 4),
Other(6, 9)),
This(Other(6, 4),
Other(1l, 9)))))).,

Other (9, 6)))

Mirror(Vec2(-2.56139, 4.19621), Vec2(2.89003, 3.0138), BrightnessToHue(0.564665, Spot(Vec2(-4.74602, -0.973344),
1.37896, Max(SoftMatte(Uniform(0.615928, 0.28928, 0.571328), Uniform(0.282334, 0.51935, 0.754801),
Uniform(0.100931, 0.370136, 0.269515)), Gamma(3.73964, Uniform(0.205834, 0.869023, 0.862499))), 1.86182,
MultiNoise(Vec2(-1.43561, -4.09413), Vec2(-0.894367, -0.546391), AdjustBrightness(0.197535, Uniform(0.619363,
0.851894, 0.816023)), AdjustSaturation(0.849886, Uniform(0.930344, 0.951282, 0.177565)), 0.0469612))))



Random GP program crossover

// The P tree with it first subtree selected:

// The QO tree with it third subtree selected:
Q00 (Q(QQQ(Q(7), Q(2), QQ(S5, 8))),
Q(QOQ(Q(3), QA(5, 3), Q(Q(3)))).,
000(00(3, 4), 00(6, 1), 00(8, 1)))

// The offspring tree with some of both:
000(Q0(3, 4), Q9(6, 1), 00(8, 1))



 Population size: 100

e Evolution steps: 1000
* equivalent to 10 “generations”

e |nitial tree size: 100

* Multiplicative components:
e 4 of 12 "hue buckets”
* average brightness near midrange
* average saturation above 50%
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Thank You!

these slides:
http://www.red3d.com/cwr/presentations/20201118 TexSyn LazyPredator.pdf

git repositories:
https://github.com/cwreynolds/TexSyn
https://github.com/cwreynolds/LazyPredator



http://www.red3d.com/cwr/presentations/20201118_TexSyn_LazyPredator.pdf
https://github.com/cwreynolds/TexSyn
https://github.com/cwreynolds/LazyPredator

