Terrain Rendering
Research for Games

Jonathan Blow
Bolt Action Software
jon@bolt-action.com

| ecture Agenda

Introduction to the problem

Survey of established algorithms
Problems with established algorithms
How we solved these problems
Future work

Gameplay goalsfor a
terrain engine

L arge enough to travel around for hours
Detailed when seen at a human scale
Dynamic modification of terrain data
Runs at high, stable frame rates

Need fast rotation of viewpoint

Technical goals
to support gameplay
L evel-of-detall management (static or

continuous?)

A lot of polygons (23! in un-reduced terrain,
70,000+ in agiven tessellation)

Rendered polygons economically represent
the terrain

Near-field detal

_—-.r- =

X

i

\

| e

i}

AR A AR

Sl

___h ;

--‘

7

il

Chief terrain CLOD papers:

e Lindstrom-Koller (SIGGRAPH *96)

* ROAM (M. Duchaineau et al, IEEE
Visualization ‘97)

* Rottger et al

Geometry management

« Our previous games used variants of Lindstrom-
Koller

* \We wanted to switch to ROAM for increased
versatility and efficiency.
 We'll now survey both of these systems.

Lindstrom-Koller and ROAM
both use a binary triangle tree.

Lindstrom-Koller algorithm

e Operates bottom-up on a

height field. T

e Considers vertex-removal
error projected to the
viewport.

e If the projection issmall, we
can remove the vertex.

| indstrom-Koller:
frame coherence

e Vertices are grouped Into
blocks, sorted by error value.

 Reducesthe number of
vertices evaluated each
frame.

ROAM algorithm

e Operates top-down on

bounding volumes. //\

e Considersthe projection of
each bounding volume to the
screen.

o If the projectionislarge, we
subdivide the volume.

ROAM: frame coherence

« Two priority queues:. split queue, merge
gueue

« Highest-priority wedges are split and
merged to maintain equilibrium triangle
count.

* Priorities modified according to viewpoint
motion.

Why we were so excited
about ROAM

* Because It’ s top-
down, It does not
dictate the form of
your terrain data.

 We could useterrain
consisting of Bezier
patches with
displacement maps.

The binary triangle tree
1S an excellent tessallator
for curved surface terran.

 Most people who work on Bezier surface
terrain use rectangular subdivision.

« BTTsprovide easier crack fixing and tighter
resol ution adaptation.

* The height map guys and the Bezier patch
guys|just don’t talk to each other?

We implemented ROAM

It ran slowly -- didn’t scale.
Spent along time trying to optimize It.
Other game developers have had ssmilar problems.

Games that use ROAM-style algorithms usually
throw away the frame-coherence portions. This
results in “split-only ROAM™.

The Evil Feedback Loop

* Thelonger you take to ssimulate aframe, the
further the viewpoint moves in that frame.

e Thusthe algorithm hasto do more work
next frame: longer simulation time.

e There's a catastrophe point where you can

no longer keep up with real time: frame rate
plummets toward O.

Minor Improvements to increase
ROAM tessellation accuracy

o Separate wedge ascent and descent

e Child-volume bounding versus contained-
vertex bounding

* \We were able to decrease polygon output
by 40% for our data set.

The problem with top-down
terrain rendering systems

* The bounding volumes hide information
about the position of the maximal error.
 In making pessimistic assumptions about

the projection, they sacrifice tess. efficiency.

viewpoint

T - ===
viewpoint

roughly the same size in screen pixels.

In an LOD’d scene, polygons tend to be

A large percentage of polygons
are small and close (50%7? 60%7?)

o

Sl
"=_-'.."-..H-|"'_ ’ Tig

T ""'ﬂh

B T b R i

W s o T e - P TR
e e e o T LT
A ﬁf-r_ﬁ::_-":' .. #'I;i.- 2

ROAM hindered by
the basic nature of LOD

» \We cannot get good priority bounds on
polygons that are nearby.

* Polygons that are nearby comprise 50% of
our tessellation.

e This hurts.

ROAM’s running time

 The ROAM paper statesit’s O(n),
N = number of LOD operations per frame.
« ROAM priority queues perform sorting.

« ROAM isactually O(mlogm),
m = number of trianglesin tessellation.

ROAM’slack of directionality
IS a problem.

 \We don’t know where wedges are relative to the
viewpoint; only how “distant” they are.

* Priorities of all wedges decrement at the same
rate... even wedges you are moving away from.

Distance d Distance d

General problem with
establisned CLOD algorithms:
Weak correlation

* The algorithms use 1-dimensional
correlation between vertices to gain speed
(within-block sorting in LK, sorted priority
gueues in ROAM)

* They spend CPU resolving ambiguitiesin
this 1D ordering.

» \We could do better correlating in 3D.

Fa(V) = Py
pn < pthresh?

* F mapsthe 3-dimensional argument v Into
the one-dimensional result p

e Thereare 3 dimensions worth of
Information in F but we see only the 1D

shadow of that in p.
« Every point in p represents an infinite
number of pointsin F aliased together.

Changing the way we think
about the projected error.

e Rather than evaluating
F (v), welook at F,
Itself.

e The set of pointsfor
which Fn(V) = Pthresn
forms a boundary surface
in 3D space.

e Thisis an isosurface of
the implicit function F..

|sosurface LOD testing

* \When the viewpoint
Crosses Into an
|ISosurface, enable the
vertex.

* \When the viewpoint
crosses back out,
disable the vertex.

How we gain efficiency

e If BiscontanedinA,

the viewpoint cannot
enter B without first A

crossing A.

How we gain efficiency

e \We store the isosurfaces
Inatree. Weonly
descend into nodes when
the viewpoint crosses an
|Sosurface.

o Statistically, terrains will
exhibit alot of natural
hierarchy.

o Split tree, merge tree

Clustering

o Attheroot level of the
|sosurface tree we will
have thousands of
Intersecting surfaces.

 \WWeintroduce extra
bounding volumes to
cluster these nodes
together.

Clustering

o Attheroot level of the
|sosurface tree we will
have thousands of
Intersecting surfaces.

 \WWeintroduce extra
bounding volumes to
cluster these nodes
together.

AKER

Noaog

X P

Performance

e The number of node traversalsis O() the
number of LOD operations required that frame,
with a slight overhead for cluster nodes. “Y ou
only pay for what you get (mostly)”.

e To make things extra speedy, we use spherical
Isosurfaces. However, the basic algorithm
works with surfaces of any shape.

Lindstrom-Koller 1sosurface

1]

L

[

Performance

231 triangles, 50K in tessellation, 12k in frustum
Quickly moving viewpoint.

ROAM gave us 1fps, unstable performance.
Lindstrom better at 8fps, moderately stable.

| sosurfaces fastest at 30+fps, very stable.

Tessellation iImprovement

e 640x480 rendering, 3-pixel error
« ROAM-stylewedges. 86284 triangles
* Direct isosurfaces: 56234 triangles

Tessellation iImprovement

e How low an error bound can we hit with a
budget of 100,000 triangles?

« ROAM-stylewedges: 2.75 pixels
* Direct isosurfaces: 2.17 pixels

Vertex buffers

* Pack verticesinto an array that gets
shipped off to the card.

e Expensiveto create or modify; cheap to
render.

e Difficult to use vertex buffers with
dynamic LOD.

Using the Isosurfaces to predict
mean-time-to-modification

* \WWe can make vertex buffers out of
Isosurfaces that don’t come very close to the
viewpoint.

e \We cluster these vertex buffers spatially so
we can do reasonable frustum culling.

o Software buffersto take care of The Other
50%.

Changing the basic
rendering method

Now to render the scene, we begin at the
root of the Isosurface tree and work our way

downward.

We no longer use the binary triangle tree for
rendering; so we phase it out entirely.

Future work

Future work:
The binary triangle tree?

* The binary triangle tree causes extratriangle
splitsto fix cracks.

 How much overhead does this produce?

o Some algorithms like Rottger’ s and Ulrich’s
triangulate quadtree blocks instead. They have
differing crack fixing policies.

« \WWhat isthe relationsnip between crack fixing
policy, tessellation density, and scene quality?

Future work:
A better error metric?

e Lindstrom-Koller uses vertical displacement to
measure error. Garland/Heckbert use normal

displacement.

 Islinear displacement even agood error metric?
What are other (non-ad-hoc) options?

* \We need a metric that judges the algorithm’s
final output. (cf. PSNR)

Future work:
Batched LOD operations?

e Our LOD decision-making isfast enough
now to be negligible for our target detail
levels.

 However our algorithm still suffersa
catastrophe at high viewpoint speeds due
to the aggregate cost of all the split/merge
operations per frame.

e Some way to perform many splitsmerges
at once would be good.

Terrain Rendering
Research for Games

Jonathan Blow
Bolt Action Software
jon@bolt-action.com

