Games Research: the Science of Interactive Entertainment

Craig Reynolds
Research and Development
Sony Computer Entertainment America

Course 39
July 25, 2000
Goals of this course

- Present specific game–related research
- Strengthen ties between the SIGGRAPH and game development communities:
 - Encourage contributions to SIGGRAPH by the game development community
 - Encourage academic researches to pursue topics related to game development.
 - Encourage game developers to follow developments in the research world.
In this introductory session...

- Background on game research
- Today’s speakers
- Two communities
- A very brief history of video games
- A quick peek at my own recent work

- Note course web page:
Audience survey

How would you describe yourself?

1: Academic researcher
2: Game developer
3: Game researcher
4: Film/TV production (including effects)
5: Tool developer (hardware/software)
6: Artist
7: Other
Games Research
Games Research

- Research underlies game progress
- Game industry draws on research from
 - academia
 - SIGGRAPH, partnerships with universities, ...
 - corporate R&D labs
 - in the game industry and elsewhere
 - in–house work by game developers
 - very limited resources
Research versus production

• Speakers at two SIGGRAPH 99 panels:
 R&D for Film Production
 How SIGGRAPH Research is Used in Games

agreed:
• there is no time during production for research
• at best, they could adapt published research to their needs
• depend on research community for innovative solutions to hard problems
Speakers
Speakers

- Craig Reynolds: introduction
- Jonathan Blow: terrain modeling
- Robert Huebner: progressive meshes
- Chris Hecker: rigid body dynamics
- Panel discussion: continuous LOD
- Robin Green: steering behaviors
- John Funge: intelligent characters
- All: questions & answers
Craig Reynolds

- Research Scientist
- Sony Computer Entertainment America
- craig_reynolds@playstation.sony.com
- http://www.red3d.com/cwr/

Background:
- Interests: autonomous characters for animation and games, Evolutionary Computation, Artificial Life. Earlier work: animation system design, a game authoring system, and a technique for modeling surfaces immersed in flow.
Jonathan Blow

- VP of Software Development
- Bolt Action Software
- jon@bolt-action.com

Background:
- Interests: modeling terrain with extremely high detail levels, and the fast rendering of materials with accurate reflectance properties. In 1995 he co-founded Bolt Action Software, which develops multiplayer games.
Robert Huebner

- Director of Technology
- Nihilistic Software, Inc.
- innerloop@nihilistic.com

Background:
- Contributed to *Jedi Knight, Descent, Starcraft*.
- Contributes to Game Developer magazine and serves on the advisory board for the Computer Game Developer’s Conference.
Chris Hecker

- Technical and Art Director
- definition six, inc.
- checker@d6.com

Background:
- Interests: high-end physics and graphics technologies. Member of Game Developers Conference advisory board, contributor to Game Developer magazine, editorial board of The Journal of Graphics Tools.
Robin Green

- Software Engineer
- Sony Computer Entertainment America
- robin_green@playstation.sony.com
- http://www.robingreen.net/

Background:

- Interests: new graphical, dynamics and AI techniques for upcoming games. Created steering behaviors for *Dungeon Keeper 2*, real–time procedural textures for *Theme Park World* and an in–game Soccer AI for *FIFA Soccer Manager*.
John Funge

- Research Scientist
- Sony Computer Entertainment America
- http://www.jfunge.com/

Background:
- Interests: quasi-intelligent computer characters for use in computer games. His Ph.D. Work was a new approach to high-level control of autonomous characters. Author of the book "AI for Games and Animation: A Cognitive Modeling Approach"
Two communities
Two communities

- While they share much in common, the two worlds of computer graphics and animation and games have separate cultures, conferences, and publications.
Two communities: moving together?

- Historically, the game industry had an *ad hoc* and non-academic software culture.
- Increasingly, game developers look to SIGGRAPH and other research forums.
- More academics now attend and speak at game conferences.
- More game developers attend and (as in this course) speak at SIGGRAPH.
Two communities: conferences

- **Graphics** (academic, film, TV, VR...and games)
 - SIGGRAPH
 - Graphics Interface
 - Eurographics
- **Games**
 - Game Developers Conference
 - *and increasingly, all of the above*
Two communities: periodicals

- **Graphics** (academic, film, TV, VR...and games)
 - ACM TOG (Transactions on Graphics)
 - IEEE Computer Graphics & Applications
 - Journal of Graphics Tools
 - Computer Graphics World
- **Games**
 - Game Developer Magazine (online: Gamasutra)
 - *...and increasingly, all of the above*
Two communities: books

- **Graphics** (academic, film, TV, VR...and games)
 - Computer Graphics: Principles and Practice (Foley, van Dam, *et al.*)
 - Graphics Gems series
 - Texturing and Modeling: Procedural Approach (Ebert, Musgrave, Peachey, Worley, Perlin)

- **Games**
 - Game Programming Gems (Deloura)
 - Graphics Programming Black Book (Abrash)
 - Zen of Code Optimization (Abrash)
 - ...and increasingly, all of the above
A brief history of video games
(pre) History of video games

- **1961:** spacewar
 - Steve Russell at MIT on a PDP–1
- **1971:** Computer Space
 - Nolan Bushnell at Nutting Associates. First dedicated game machine.
- **1972:** Magnavox introduces Odyssey
 - Based on Ralph Baer’s 1951 concept and a 1967 prototype.
- **1977:** Atari introduces VCS (2600)
Game history: on personal computers

- 1977: Apple 2
- 1982: Commodore 64
- 1985: Commodore Amiga
- 1987: VGA
- 1993: Doom
- 1995: Voodoo Graphics
- 1996: Quake
- 1997: Ultima Online
Game history: consoles

- 1985: Nintendo Entertainment System
- 1989: Sega releases 16-bit Genesis
- 1991: Nintendo releases 16-bit SNES
- 1992: 3DO releases its 32-bit console
- 1995: Sega releases 32-bit Saturn
- 1995: Sony releases 32-bit PlayStation
- 1996: Nintendo releases N64
- 1999: Sega releases Dreamcast
- 2000: Sony releases PlayStation2
Some of my recent work
Interaction with realtime flocks

- Based on the 1987 *boids* model of flocks, herds and schools
- Uses fast hardware (PS2), and spatial data structures to accelerate *boids*: about 6000 times faster than in 1987.
- Allows real time (60 fps) interaction with a group of about 300 birds.
- Includes behavioral state transitions
Pigeons in the Park
Coevolution of Tag Players

- The game of tag
 - symmetrical pursuit and evasion
 - role reversal
- Goal: discover steering behavior for tag
- Method: emergence of behavior
 - coevolution
 - competitive fitness
- Self–organization:
 - no expert knowledge required
Sensors and obstacles
It works!

Diagram:
- Title: otag-h: Population best and average versus handmade program
- X-axis: Generations
- Y-axis: Fraction of games won
- Two lines representing population best and average compared to a handmade program.
Typical fitness test (1)
Typical fitness test (2)
Competitive coevolution: summary

• **Pros:**
 - Can produce high quality players
 - Meets or beats human–designed players
 - Does not require knowing a winning strategy or how to implement it.

• **Cons:**
 - Requires very long computation time even for a very simple game.
 - Untested for games requiring complex strategy.
Summary

- Game research
 - the field
 - this course
- Course speakers
- Two communities
- Video game history
- My work

- Course web page